Stromal cell-derived factor-1 (SDF-1) and Exendin-4 (EX-4) play beneficial roles in promoting periodontal ligament stem cells (PDLSCs) osteogenic differentiation, while the detailed mechanism has not been clarified. In this study, we aimed to evaluate the biological mechanism of SDF-1 and EX-4 alone or synergistic application in regulating PDLSCs differentiation by RNA-sequencing (RNA-seq). A total of 110, 116 and 109 differentially expressed genes (DEGs) were generated in osteogenic medium induced PDLSCs treated by SDF-1, EX-4, and SDF-1+EX-4, respectively. The DEGs in SDF-1 group were enriched in signal transduction related signaling pathways; the DEGs in EX-4 group were enriched in metabolism and biosynthesis-related pathways; and the DEGs generated in SDF-1+EX-4 group were mainly enriched in RNA polymerase II transcription, cell differentiation, chromatin organization, protein phosphorylation pathways. Based on Venn analysis, a total of 37 specific DEGs were identified in SDF-1+EX-4 group, which were mainly enriched in negative regulation of autophagy and cellular component disassembly signaling pathways. Short time-series expression miner (STEM) analysis grouped all expressed genes of PDLSCs into 49 clusters according to the dynamic expression patterns and 25 genes, including NRSN2, CHD9, TUBA1A, distributed in 10 gene clusters in SDF-1+EX-4 treated PDLSCs were significantly up-regulated compared with the SDF-1 and EX-4 alone groups. The gene set enrichment analysis indicated that SDF-1 could amplify the role of EX-4 in regulating varied signaling pathways, such as type II diabetes mellitus and insulin signaling pathways; while EX-4 could aggravate the effect of SDF-1 on PDLSCs biological roles regulating primary immunodeficiency, tight junction signaling pathways. In summary, our study confirmed that SDF-1 and EX-4 combined application could enhance PDLSCs biological activity and promote PDLSCs osteogenic differentiation by regulating the metabolism, biosynthesis and immune-related signaling pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8404574PMC
http://dx.doi.org/10.7717/peerj.12091DOI Listing

Publication Analysis

Top Keywords

signaling pathways
24
sdf-1 ex-4
16
group enriched
16
osteogenic differentiation
12
stromal cell-derived
8
cell-derived factor-1
8
periodontal ligament
8
ligament stem
8
stem cells
8
sdf-1
8

Similar Publications

Objectives: COVID-19 and systemic sclerosis (SSc) share multiple similarities in their clinical manifestations, alterations in immune response, and therapeutic options. These resemblances have also been identified in other immune-mediated inflammatory diseases where a common genetic component has been found. Thus, we decided to evaluate for the first time this shared genetic architecture with SSc.

View Article and Find Full Text PDF

The objective of this study was to investigate the cardioprotective effects of Munziq on abnormal body fluid myocardial ischemia-reperfusion injury (MIRI) and its underlying mechanism.Normal rats and rats with abnormal body fluid (ABF) were pre-treated with Munziq for 21 days. Following this, MIRI models were established.

View Article and Find Full Text PDF

The reduction in alveolar ridge height and width after tooth extraction poses a substantial challenge for dental implant restoration. This study aimed to observe the roles of S100A8 in the inflammatory response and bone resorption following tooth extraction. Rat mandibular second molars were extracted.

View Article and Find Full Text PDF

Background: Acute systemic inflammation affects many organs and it occurs in a wide range of conditions such as acute lung injury (ALI). Inflammation-triggered oxidative pathways together with the caspase activation seen in ALI, result in apoptosis. Dapagliflozin (DPG) is an agent that is known to have oxidative stress-reducing and anti-inflammatory effects in many tissues.

View Article and Find Full Text PDF

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

Metab Brain Dis

January 2025

Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!