A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanism of Intervention in Cerebral Infarction: A Research Based on Chemoinformatics and Systematic Pharmacology. | LitMetric

AI Article Synopsis

  • The study aims to identify potential therapeutic targets and biological mechanisms related to cerebral infarction (CI) through network pharmacology and proteomics.
  • Using various databases and tools, researchers compiled 14 compounds and 425 targets, revealing critical processes and pathways involved in CI that may be influenced by these interventions.
  • Proteomics analysis highlighted 20 differential proteins potentially involved in synaptic functions, suggesting specific roles in the pathology of CI, including protein interactions and cellular mechanisms.

Article Abstract

Objective: To explore the therapeutic targets, network modules, and coexpressed genes of intervention in cerebral infarction (CI), and to predict significant biological processes and pathways through network pharmacology. To explore the differential proteins of intervention in CI, conduct bioinformatics verification, and initially explain the possible therapeutic mechanism of intervention in CI through proteomics.

Methods: The TCM database was used to predict the potential compounds of Radix Rhei Et Rhizome, and the PharmMapper was used to predict its potential targets. GeneCards and OMIM were used to search for CI-related genes. Cytoscape was used to construct a protein-protein interaction (PPI) network and to screen out core genes and detection network modules. Then, DAVID and Metascape were used for enrichment analysis. After that, in-depth analysis of the proteomics data was carried out to further explore the mechanism of intervention in CI.

Results: (1) A total of 14 potential components and 425 potential targets were obtained. The core components include sennoside A, palmidin A, emodin, toralactone, and so on. The potential targets were combined with 297 CI genes to construct a PPI network. The targets shared by and CI include ALB, AKT1, MMP9, IGF1, CASP3, etc. The biological processes that may treat CI include platelet degranulation, cell migration, fibrinolysis, platelet activation, hypoxia, angiogenesis, endothelial cell apoptosis, coagulation, and neuronal apoptosis. The signaling pathways include Ras, PI3K-Akt, TNF, FoxO, HIF-1, and Rap1 signaling pathways. (2) Proteomics shows that the top 20 proteins in the differential protein PPI network were Syp, Syn1, Mbp, Gap43, Aif1, Camk2a, Syt1, Calm1, Calb1, Nsf, Nefl, Hspa5, Nefh, Ncam1, Dcx, Unc13a, Mapk1, Syt2, Dnm1, and Cltc. Differential protein enrichment results show that these proteins may be related to synaptic vesicle cycle, vesicle-mediated transport in synapse, presynaptic endocytosis, synaptic vesicle endocytosis, axon guidance, calcium signaling pathway, and so on.

Conclusion: This study combined network pharmacology and proteomics to explore the main material basis of for the treatment of CI such as sennoside A, palmidin A, emodin, and toralactone. The mechanism may be related to the regulation of biological processes (such as synaptic vesicle cycle, vesicle-mediated transport in synapse, presynaptic endocytosis, and synaptic vesicle endocytosis) and signaling pathways (such as Ras, PI3K-Akt, TNF, FoxO, HIF-1, Rap1, and axon guidance).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8440083PMC
http://dx.doi.org/10.1155/2021/6789835DOI Listing

Publication Analysis

Top Keywords

synaptic vesicle
16
mechanism intervention
12
biological processes
12
potential targets
12
ppi network
12
signaling pathways
12
intervention cerebral
8
cerebral infarction
8
network modules
8
network pharmacology
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!