A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Endoplasmic Reticulum Stress Induced Proliferation Remains Intact in Aging Mouse β-Cells. | LitMetric

Aging is associated with loss of proliferation of the insulin-secreting β-cell, a possible contributing factor to the increased prevalence of type 2 diabetes in the elderly. Our group previously discovered that moderate endoplasmic reticulum (ER) stress occurring during glucose exposure increases the adaptive β-cell proliferation response. Specifically, the ATF6α arm of the tripartite Unfolded Protein Response (UPR) promotes β-cell replication in glucose excess conditions. We hypothesized that β-cells from older mice have reduced proliferation due to aberrant UPR signaling or an impaired proliferative response to ER stress or ATF6α activation. To investigate, young and old mouse islet cells were exposed to high glucose with low-dose thapsigargin or activation of overexpressed ATF6α, and β-cell proliferation was quantified by BrdU incorporation. UPR pathway activation was compared by qPCR of target genes and semi-quantitative splicing assay. Intriguingly, although old β-cells had reduced proliferation in high glucose compared to young β-cells, UPR activation and induction of proliferation in response to low-dose thapsigargin or ATF6α activation in high glucose were largely similar between young and old. These results suggest that loss of UPR-led adaptive proliferation does not explain the reduced cell cycle entry in old β-cells, and raise the exciting possibility that future therapies that engage adaptive UPR could increase β-cell number through proliferation even in older individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8438540PMC
http://dx.doi.org/10.3389/fendo.2021.734079DOI Listing

Publication Analysis

Top Keywords

high glucose
12
proliferation
9
endoplasmic reticulum
8
reticulum stress
8
β-cell proliferation
8
proliferation response
8
reduced proliferation
8
atf6α activation
8
low-dose thapsigargin
8
β-cells
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!