A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and Characterization of a Chest CT Atlas. | LitMetric

Development and Characterization of a Chest CT Atlas.

Proc SPIE Int Soc Opt Eng

Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville TN, USA 37235.

Published: February 2021

A major goal of lung cancer screening is to identify individuals with particular phenotypes that are associated with high risk of cancer. Identifying relevant phenotypes is complicated by the variation in body position and body composition. In the brain, standardized coordinate systems (e.g., atlases) have enabled separate consideration of local features from gross/global structure. To date, no analogous standard atlas has been presented to enable spatial mapping and harmonization in chest computational tomography (CT). In this paper, we propose a thoracic atlas built upon a large low dose CT (LDCT) database of lung cancer screening program. The study cohort includes 466 male and 387 female subjects with no screening detected malignancy (age 46-79 years, mean 64.9 years). To provide spatial mapping, we optimize a multi-stage inter-subject non-rigid registration pipeline for the entire thoracic space. Briefly, with 50 scans of 50 randomly selected female subjects as fine tuning dataset, we search for the optimal configuration of the non-rigid registration module in a range of adjustable parameters including: registration searching radius, degree of keypoint dispersion, regularization coefficient and similarity patch size, to minimize the registration failure rate approximated by the number of samples with low Dice similarity score (DSC) for lung and body segmentation. We evaluate the optimized pipeline on a separate cohort (100 scans of 50 female and 50 male subjects) relative to two baselines with alternative non-rigid registration module: the same software with default parameters and an alternative software. We achieve a significant improvement in terms of registration success rate based on manual QA. For the entire study cohort, the optimized pipeline achieves a registration success rate of 91.7%. The application validity of the developed atlas is evaluated in terms of discriminative capability for different anatomic phenotypes, including body mass index (BMI), chronic obstructive pulmonary disease (COPD), and coronary artery calcification (CAC).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442827PMC
http://dx.doi.org/10.1117/12.2580800DOI Listing

Publication Analysis

Top Keywords

non-rigid registration
12
lung cancer
8
cancer screening
8
spatial mapping
8
study cohort
8
female subjects
8
registration module
8
optimized pipeline
8
registration success
8
success rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!