https://bit.ly/3zA9RC5

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8613836PMC
http://dx.doi.org/10.1183/13993003.00759-2021DOI Listing

Publication Analysis

Top Keywords

leveraging ageing
4
ageing models
4
models pulmonary
4
pulmonary fibrosis
4
fibrosis efficacy
4
efficacy nintedanib
4
nintedanib ageing
4
ageing https//bitly/3za9rc5
4
leveraging
1
models
1

Similar Publications

Drug repositioning for Parkinson's disease: an emphasis on artificial intelligence approaches.

Ageing Res Rev

January 2025

Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Parkinson's disease (PD) is one of the most incapacitating neurodegenerative diseases (NDDs). PD is the second most common NDD worldwide which affects approximately 1 to 2 percent of people over 65 years. It is an attractive pursuit for artificial intelligence (AI) to contribute to and evolve PD treatments through drug repositioning by repurposing existing drugs, shelved drugs, or even candidates that do not meet the criteria for clinical trials.

View Article and Find Full Text PDF

Background: DNA methylation (DNAm) data from human samples has been leveraged to develop "epigenetic clock" algorithms that predict age and other aging-related phenotypes. Some DNAm clocks were trained using DNAm obtained from blood cells, while other clocks were trained using data from diverse tissue/cell types. To assess how DNAm clocks perform across non-blood tissue types, we applied DNAm algorithms to DNAm data generated from 9 different human tissue types.

View Article and Find Full Text PDF

Cognitive impairments in chronic pain: a brain aging framework.

Trends Cogn Sci

January 2025

Key Laboratory of Cognitive Science and Mental Health, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China. Electronic address:

Chronic pain (CP) not only causes physical discomfort but also significantly affects cognition. This review first summarizes emerging findings that reveal complex associations between CP and cognitive impairments, and then presents neuroimaging evidence showing aging-related brain alterations in CP and proposes a framework where accelerated brain aging links CP to cognitive impairments. This framework explains how CP-related multi-level factors, which either contribute to the onset of CP or arise as a result of CP, influence brain aging in linear and nonlinear ways, leading to cognitive impairments and increased dementia risk.

View Article and Find Full Text PDF

Circadian neurons within animal brains orchestrate myriad physiological processes and behaviors, but the contribution of these neurons to the regulation of sleep is not well understood. To address this deficiency, we leveraged single-cell RNA sequencing to generate a comprehensive census of transcriptomic cell types of clock neurons. We focused principally on the enigmatic DN3s, which constitute most fly brain clock neurons and were previously almost completely uncharacterized.

View Article and Find Full Text PDF

Against the backdrop of an aging population, community pension initiatives are gaining traction, permeating societal landscapes. This study delves into the equilibrium strategy within the context of a defined benefit pension plan, employing a differential game framework with a community pension model. Hence, the model entails the company's controls over investment rates in funds, juxtaposed with employees' inclination towards a greater proportion of community pension allocation in said funds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!