Dengue models based on machine learning techniques: A systematic literature review.

Artif Intell Med

Grupo de Investigación en I+D+i en TIC, Universidad EAFIT, Medellín, Colombia.

Published: September 2021

Background: Dengue modeling is a research topic that has increased in recent years. Early prediction and decision-making are key factors to control dengue. This Systematic Literature Review (SLR) analyzes three modeling approaches of dengue: diagnostic, epidemic, intervention. These approaches require models of prediction, prescription and optimization. This SLR establishes the state-of-the-art in dengue modeling, using machine learning, in the last years.

Methods: Several databases were selected to search the articles. The selection was made based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology. Sixty-four articles were obtained and analyzed to describe their strengths and limitations. Finally, challenges and opportunities for research on machine-learning for dengue modeling were identified.

Results: Logistic regression was the most used modeling approach for the diagnosis of dengue (59.1%). The analysis of the epidemic approach showed that linear regression (17.4%) is the most used technique within the spatial analysis. Finally, the most used intervention modeling is General Linear Model with 70%.

Conclusions: We conclude that cause-effect models may improve diagnosis and understanding of dengue. Models that manage uncertainty can also be helpful, because of low data-quality in healthcare. Finally, decentralization of data, using federated learning, may decrease computational costs and allow model building without compromising data security.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2021.102157DOI Listing

Publication Analysis

Top Keywords

dengue modeling
12
dengue
8
dengue models
8
machine learning
8
systematic literature
8
literature review
8
modeling
6
models based
4
based machine
4
learning techniques
4

Similar Publications

APPLICATIONS OF MATHEMATICAL PROGRAMMING TO GENETIC BIOCONTROL.

SIAM J Appl Math

January 2024

Division of Epidemiology and Biostatistics, School of Public Health, University of California Berkeley, Berkeley, CA 94704 USA.

We review existing approaches to optimizing the deployment of genetic biocontrol technologies-tools used to prevent vector-borne diseases such as malaria and dengue-and formulate a mathematical program that enables the incorporation of crucial ecological and logistical details. The model is comprised of equality constraints grounded in discretized dynamic population equations, inequality constraints representative of operational limitations including resource restrictions, and an objective function that jointly minimizes the count of competent mosquito vectors and the number of transgenic organisms released to mitigate them over a specified time period. We explore how nonlinear programming (NLP) and mixed integer nonlinear programming (MINLP) can advance the state of the art in designing the operational implementation of three distinct transgenic public health interventions, two of which are presently in active use around the world.

View Article and Find Full Text PDF

Background: Dengue, chikungunya, and Zika are mosquito-borne diseases of major human concern. Differential diagnosis is complicated in children and adolescents by their overlapping clinical features (signs, symptoms, and complete blood count results). Few studies have directly compared the three diseases.

View Article and Find Full Text PDF

Computational Insights on the Assembly of the Dengue Virus Membrane-Capsid-RNA Complex.

J Membr Biol

January 2025

Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.

Dengue virus, an arbovirus from the genus Flavivirus in the family Flaviviridae, forms a nucleocapsid structure through interactions between its genome and multiple copies of the capsid protein. Experimental studies have confirmed the interaction between the viral capsid protein and lipid droplets, indicating a protein-lipid interaction. Cryo-EM studies show that in immature viruses, the nucleocapsid is located close to the viral membrane.

View Article and Find Full Text PDF

In holometabolous insects, critical weight (CW) attainment triggers pupation and metamorphosis, but its mechanism remains unclear in non-model organisms like mosquitoes. Here, we investigate the role of 20-hydroxyecdysone (20E) in CW assessment and pupation timing in Aedes albopictus and Ae. aegypti, vectors of arboviruses including dengue and Zika.

View Article and Find Full Text PDF

Dengue remains the most rapidly advancing vector-borne disease in the world, and while the disease burden is predominantly in low-to-middle-income countries, the association with poverty remains in question. Consequently, a study was undertaken to evaluate the prevalence of anti-dengue antibodies among individuals residing in the People's Housing Program (PPR), a government-sponsored low-cost housing initiative targeting low-income earners. This type of public housing often faces challenges, including substandard housing facilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!