Background: Preconditioning of the heart ameliorates doxorubicin (Dox)-induced cardiotoxicity. We tested whether pretreating cardiomyocytes by mitochondrial-targeted antioxidants, mitoquinone (MitoQ) or SKQ1, would provide better protection against Dox than co-treatment.
Methods: We investigated the dose-response relationship of MitoQ, SKQ1, and vitamin C on Dox-induced damage on H9c2 cardiomyoblasts when drugs were given concurrently with Dox (e.g., co-treatment) or 24 h prior to Dox (e.g., pretreatment). Moreover, their effects on intracellular and mitochondrial oxidative stress were evaluated by 2,7-dichlorofluorescin diacetate and MitoSOX, respectively.
Results: Dox (0.5-50 μM, n = 6) dose-dependently reduced cell viability. By contrast, co-treatment of MitoQ (0.05-10 μM, n = 6) and SKQ1 (0.05-10 μM, n = 6), but not vitamin C (1-2000 μM, n = 3), significantly improved cell viability only at intermediate doses (0.5-1 μM). MitoQ (1 μM) and SKQ1 (1 μM) significantly increased cell viability to 1.79 ± 0.12 and 1.59 ± 0.08 relative to Dox alone, respectively (both p < 0.05). Interestingly, when given as pretreatment, only higher doses of MitoQ (2.5 μM, n = 9) and SKQ1 (5 μM, n = 7) showed maximal protection and improved cell viability to 2.19 ± 0.13 and 1.65 ± 0.07 relative to Dox alone, respectively (both p < 0.01), which was better than that of co-treatment. Moreover, the protective effects were attributed to the significant reduction in Dox-induced intracellular and mitochondrial oxidative stress.
Conclusion: The data suggest that MitoQ and SKQ1, but not vitamin C, mitigated DOX-induced damage. Moreover, MitoQ pretreatment showed significantly higher cardioprotection than its co-treatment and SKQ1, which may be due to its better antioxidant effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8447656 | PMC |
http://dx.doi.org/10.1186/s40360-021-00518-6 | DOI Listing |
J Med Chem
January 2025
School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery.
View Article and Find Full Text PDFMol Cancer Res
January 2025
Fox Chase Cancer Center, Philadelphia, PA, United States.
Breast cancers of the IntClust-2 type, characterized by amplification of a small portion of chromosome 11, have a median survival of only five years. Several cancer-relevant genes occupy this portion of chromosome 11, and it is thought that overexpression of a combination of driver genes in this region is responsible for the poor outcome of women in this group. In this study we used a gene editing method to knock out, one by one, each of 198 genes that are located within the amplified region of chromosome 11 and determined how much each of these genes contributed to the survival of breast cancer cells.
View Article and Find Full Text PDFClin Cancer Res
January 2025
Istituti Fisioterapici Ospitalieri, Italy.
Background: The role of activating alterations in the MAPK pathway in predicting immunotherapy efficacy in lung squamous cell carcinoma (LSCC) patients is largely unknown. The aims of the randomized, phase II SQUINT trial were to assess the efficacy of nivolumab plus ipilimumab (NI) versus platinum-based chemotherapy plus nivolumab (N-CT) and to identify clinically available biomarkers of response to immunotherapy in patients with advanced or metastatic LSCC.
Methods: SQUINT was an open-label, randomized, parallel, non-comparative, phase II trial of NI versus N-CT in chemo-naïve, metastatic or recurrent LSCC adult patients.
Discov Nano
January 2025
Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany.
Metastatic cancer cells undergo metabolic reprogramming, which involves changes in the metabolic fluxes, including endocytosis, nucleocytoplasmic transport, and mitochondrial metabolism, to satisfy their massive demands for energy, cell division, and proliferation compared to normal cells. We have previously demonstrated the ability of two different types of compounds to interfere with linchpins of metabolic reprogramming, Pitstop-2 and 1,6-hexanediol (1,6-HD). 1,6-HD disrupts glycolysis enzymes and mitochondrial function, enhancing reactive oxygen species production and reducing cellular ATP levels, while Pitstop-2 impedes clathrin-mediated endocytosis and small GTPases activity.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
January 2025
Department of Critical Care Medicine, The Qujing NO.1 People's Hospital, Qujing, 655000, Yunnan, China.
Melatonin (MEL), functioning as a circulating hormone, is important for the regulation of ferroptosis in different health scenarios and acts as a crucial antioxidant in cardiovascular diseases. However, its specific function in ferroptosis related to myocardial ischemia-reperfusion injury (MIRI) remains to be fully elucidated. In our research, we utilized a rat model of MIRI induced by coronary artery ligation, along with a cell model subjected to hypoxia/reoxygenation (H/R).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!