Objectives: The objective of this study is to highlight the effect of a robotic driver assistance module of powered wheelchair (PWC), using infrared sensors and accessorizing a commercial wheelchair) on the reduction of the number of collisions in standardized circuit in a population with neurological disorders by comparing driving performance with and without assistance.

Methods: This is a prospective, single-center, controlled, repeated measure design, single-blind pilot study including patients with neurological disabilities who are usual drivers of electric wheelchairs. The main criterion for evaluating the device is the number of collisions with and without the assistance of a prototype anti-collision system on three circuits of increasing complexity. Travel times, cognitive load, driving performance, and user satisfaction are also analyzed.

Results: 23 Patients, 11 women and 12 men with a mean age of 48 years old completed the study. There was a statistically significant reduction in the number of collisions on the most complex circuit: 61% experienced collisions without assistance versus 39% with assistance (p = 0.038).

Conclusion: This study concludes that the PWC driving assistance module is efficient in terms of safety without reducing the speed of movement in a population of people with disabilities who are habitual wheelchair drivers. The prospects are therefore to conduct tests on a target population with driving failure or difficulty who could benefit from this device so as to allow them to travel independently and safely.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8447623PMC
http://dx.doi.org/10.1186/s12984-021-00923-2DOI Listing

Publication Analysis

Top Keywords

number collisions
12
controlled repeated
8
repeated measure
8
measure design
8
pilot study
8
assistance module
8
reduction number
8
driving performance
8
collisions assistance
8
study
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!