The Role of Neuroglial Metabotropic Glutamate Receptors in Alzheimer's Disease.

Curr Neuropharmacol

Department of Cellular and Molecular Medicine, University of Ottawa 451 Smyth Road, Ottawa K1H 8M5, Ontario, Canada.

Published: March 2023

Glutamate, the major excitatory neurotransmitter in the brain exerts its effects via both ionotropic glutamate receptors and metabotropic glutamate receptors (mGluRs). There are three subgroups of mGluRs, pre-synaptic Group II and Group III mGluRs and post-synaptic Group I mGluRs. mGluRs are ubiquitously expressed in the brain and their activation is poised upstream of a myriad of signaling pathways, resulting in their implication in the pathogenesis of various neurodegenerative diseases including, Alzheimer's Disease (AD). While the exact mechanism of AD etiology remains elusive, β-amyloid (Aβ) plaques and hyperphosphorylated tau tangles remain the histopathological hallmarks of AD. Though less electrically excitable, neuroglia are a major non-neuronal cell type in the brain and are composed of astrocytes, microglia, and oligodendrocytes. Astrocytes, microglia, and oligodendrocytes provide structural and metabolic support, active immune defence, and axonal support and sheathing, respectively. Interestingly, Aβ and hyperphosphorylated tau are known to disrupt the neuroglial homeostasis in the brain, pushing them towards a more neurotoxic state. In this review, we discuss what is currently known regarding the expression patterns of various mGluRs in neuroglia and how Aβ and tau alter the normal mGluR function in the neuroglia and contribute to the pathophysiology of AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10190143PMC
http://dx.doi.org/10.2174/1570159X19666210916102638DOI Listing

Publication Analysis

Top Keywords

glutamate receptors
12
metabotropic glutamate
8
alzheimer's disease
8
hyperphosphorylated tau
8
astrocytes microglia
8
microglia oligodendrocytes
8
mglurs
6
role neuroglial
4
neuroglial metabotropic
4
glutamate
4

Similar Publications

Introduction: Stress-evoked dysfunctions of the frontal cortex (FC) are correlated with changes in the functioning of the glutamatergic system, and evidence demonstrates that noradrenergic transmission is an important regulator of this process. In the current study, we adopted a restraint stress (RS) model in male Wistar rats to investigate whether the blockade of β1 adrenergic receptors (β1AR) with betaxolol (BET) in stressed animals influences the body's stress response and the expression of selected signaling proteins in the medial prefrontal cortex (mPFC).

Methods: The study was divided into two parts.

View Article and Find Full Text PDF

Gamma oscillations and excitation/inhibition imbalance: parallel effects of N-methyl D-aspartate receptor antagonism and psychosis.

Biol Psychiatry Cogn Neurosci Neuroimaging

January 2025

San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States; University of California, San Francisco, San Francisco, CA, United States. Electronic address:

Background: Auditory steady-state response (ASSR) abnormalities in the 40-Hz (gamma band) frequency have been observed in schizophrenia and rodent studies of N-methyl D-aspartate glutamate receptor (NMDAR) hypofunction. However, the extent to which 40-Hz ASSR abnormalities in schizophrenia resemble deficits in 40-Hz ASSR induced by acute administration of ketamine, an NMDAR antagonist, is not yet known.

Methods: To address this knowledge gap, we conducted parallel EEG studies: a crossover, placebo-controlled ketamine drug challenge study in healthy subjects (Study 1) and a comparison of patients with schizophrenia and healthy controls subjects (Study 2).

View Article and Find Full Text PDF

Neuropathic pain, caused by nerve damage, greatly affects quality of life. Recent research proposes modulating brain activity, particularly through electrical stimulation of the insular cortex (IC), as a treatment option. This study aimed to understand how IC stimulation (ICS) affects pain modulation.

View Article and Find Full Text PDF

Thrombin-induced kynurenine 3-monooxygenase causes variations in the kynurenine pathway, leading to neurological deficits in a murine intracerebral hemorrhage model.

J Pharmacol Sci

February 2025

Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan.

The purpose of the present study is to investigate changes in the kynurenine pathway after intracerebral hemorrhage (ICH) and its effects on ICH-induced injury. The exposure of a primary rat microglial culture to thrombin increased the mRNA level of kynurenine 3-monooxygenase (KMO), and this increase was attenuated by a p38 MAPK inhibitor. Thrombin also increased the protein level of KMO.

View Article and Find Full Text PDF

Can memantine treat autism? Answers from preclinical and clinical studies.

Neurosci Biobehav Rev

January 2025

Neuropsychiatry Department, Faculty of Medicine, Galala University, Suez, Egypt; Neuropsychiatry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.

Autism Spectrum Disorder (ASD) represents a clinical challenge due to its diverse behavioral symptoms and complex neuro-pathophysiology. Finding effective treatments that target the fundamental mechanisms of ASD remains a top priority. This narrative review presents the potential of the NMDA-receptor blocker memantine in managing ASD symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!