A novel electrochemiluminescence aptasensor based on copper-gold bimetallic nanoparticles and its applications.

Biosens Bioelectron

School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, 255049, China. Electronic address:

Published: December 2021

In this work, a novel electrochemiluminescence (ECL) aptasensor was structured for the detection of four organophosphorus pesticides (OPs). Firstly, multi-walled carbon nanotubes (MWCNTs) were used to create a favorable loading interface for the fixation of tris (2, 2'-bipyridyl) ruthenium (II) (Ru (bpy)). At the same time, copper (core)-gold (shell) bimetallic nanoparticles (Cu@Au NPs) were synthesized in the aqueous phase for the sensor construction. Gold nanoparticles (Au NPs) could promote the electrochemiluminescence intensity of Ru (bpy) with high efficiency by catalyzing the oxidation process of tri-n-propylamine (TPrA). Compared with the Au NPs, Cu@Au NPs increased the solid loading of Au NPs by virtue of the large specific surface area of copper nanoparticles (Cu NPs), which could further improve the sensitivity of aptasensor. When OPs were added, the ECL intensity was significantly reduced, and the concentration of OPs could be detected through the ECL intensity. Under the optimum conditions, the aptasensor had a wider dynamic range and ultra-low detection limit for the detection of four pesticides: profenofos, isocarbophos, phorate, and omethoate, and their detection limits were 3 × 10 ng/mL, 3 × 10 ng/mL, 3 × 10 ng/mL, and 3 × 10 ng/mL respectively (S/N = 3). The aptasensor had the merits of good stability, reproducibility, and specificity, and had a favorable recovery rate in detecting OPs residues in vegetables. This work provided an effective method for the construction of a simple, rapid, and sensitive biosensor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2021.113601DOI Listing

Publication Analysis

Top Keywords

3 × 10 ng/ml 3 × 10 ng/ml
12
novel electrochemiluminescence
8
bimetallic nanoparticles
8
cu@au nps
8
nanoparticles nps
8
ecl intensity
8
nps
6
aptasensor
5
electrochemiluminescence aptasensor
4
aptasensor based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!