A chemiluminescent probe has been developed, consisting of phenoxy-dioxetane moiety covalently attached to trans-cyclooctene. The inverse electron demand Diels-Alder reaction with tetrazine produces a cycloaddition product which undergoes a series of spontaneous rearrangements resulting in emission of green light. The chemiluminescent probe can be applied to study bioconjugation chemistry with tetrazine-modified biomaterials, which have recently been shown to have great potential for anticancer drug delivery. This work describes in vitro studies, including NMR and spectroscopic investigation of chemiluminescence, which will pave way for future in vivo bioconjugation experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2021.116400 | DOI Listing |
Biosensors (Basel)
January 2025
Furong Labratory, Changsha 410083, China.
A fluorescence probe for "switch-on" detection of alkaline phosphatase (ALP) was developed based on Au nanoclusters anchored MnO nanosheets (Au NCs-MnO NSs), which were synthesized using bovine serum albumin (BSA) as template through a simple one-pot approach. In the sensing system, MnO NSs function as both energy acceptors and target identifiers, effectively quenches the fluorescence of Au NCs via fluorescence resonance energy transfer (FRET). The presence of ALP catalyzes the hydrolysis of L-ascorbic acid-2-phosphate (AAP) to ascorbic acid (AA), reducing MnO NSs to Mn and facilitate the fluorescence recovery of Au NCs.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
School of Biomedical Sciences and Engineering, Koç University, 34450 Istanbul, Turkey.
Human monkeypox (Mpox) is a zoonotic disease caused by the Monkeypox virus (MPXV). As of 14 August 2024, the World Health Organization (WHO) has declared it a global health emergency. For Mpox, this was the second public health emergency of global significance in the past two years.
View Article and Find Full Text PDFThis study presents the characterization of a novel multilayered three-dimensional (3D) polymer exhibiting aggregation-induced emission (AIE) properties when excited at a low wavelength of 280 nm. Utilizing fluorescence spectroscopy, we demonstrate that the polymer displays a marked enhancement in luminescence upon aggregation, a characteristic behavior that distinguishes AIE-active materials from conventional fluorophores. Furthermore, we explore the potential application of this multilayered 3D polymer as a fluorescent probe for the selective detection of specified metal ions.
View Article and Find Full Text PDFLuminescence
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
The fused heterocycle 1-(imidazo[5,1-a]isoquinolin-3-yl)naphthalen-2-ol (LH) has been synthesized and characterized by spectroscopic methods. Probe LH upon irradiation with λ = 336 nm exhibited strong fluorescence with λ = 437 nm in MeOH/HEPES buffer (5 mM, pH = 7.4, 2:8, v/v).
View Article and Find Full Text PDFAnal Chem
January 2025
School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
Aggregation-induced emission (AIE) or aggregation-induced emission enhancement (AIEE) has endowed gold species with responsive fluorescent properties, favoring their potential applications in sensing, imaging, and therapy. However, it remains an interesting challenge to fabricate fluorophores with both AIE and AIEE effects. Herein, we presented highly luminescent Au(I) thiolate nanocomplex-based biosensors with Zn induced-AIE and zeolite imidazolate framework (ZIF-8) induced-AIEE effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!