Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Spectroscopic studies of protonated water clusters (PWCs) have yielded enormous insights into the fundamental nature of the hydrated proton. Here, we introduce a new coupled local-mode (CLM) approach to calculate PWC OH stretch vibrational spectra. The CLM method combines a sampling of representative configurations from density functional theory (DFT)-based molecular dynamics (AIMD) simulations with DFT calculations of local-mode vibrational frequencies and couplings. Calculations of inhomogeneous OH stretch vibrational spectra for H(HO) and H(HO) agree well with experiment and higher-level calculations, and decompositions of the calculated spectra in terms of the coupled modes aids in the interpretation of the spectra. This observation is consistent with the idea that capturing anharmonicity and coupling is as important to accuracy as the underlying level of electronic structure theory. The CLM calculations can easily discern the configuration that dominates the experimental measurement for H(HO), which can adopt several low-energy conformations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.1c02254 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!