We present a method for the evaluation of fluorescence fluctuations on the basis of Mandel's Q parameter, using sampling time-dependent factorial cumulants. By relating the Q parameter to the sampling time, we obtain the mean single molecule rate (mSMR), an easy to interpret expression that provides both brightness and diffusion information. The model is suitable for the widely used confocal setups with single photon excitation and a single detection channel. We present a way to correct the mSMR for afterpulsing, dead time and background noise. To account for photokinetic effects at short sampling times, we expand the model by a simple on/off isomerization term, which is similar to the well-known triplet model. The functionality of the mSMR is shown using Monte Carlo simulations. The correction mechanisms and the experimental applicability of the model are then demonstrated by DNA measurements of defined composition. By systematically analyzing DNA mixtures, we can show that at large sampling times, the mSMR correctly describes the single molecule brightness rates and the diffusive properties of DNA molecules. At short sampling times, the photokinetic effects of isomerization are accurately described by the mSMR model. Since additionally the mSMR can easily be corrected for measurement artefacts such as detector dead time, afterpulsing and background noise, this is a valuable advantage over the standard method of fluorescence correlation spectroscopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547212PMC
http://dx.doi.org/10.1007/s10895-021-02803-3DOI Listing

Publication Analysis

Top Keywords

single molecule
12
sampling times
12
molecule rate
8
rate msmr
8
fluorescence fluctuations
8
dna mixtures
8
defined composition
8
parameter sampling
8
dead time
8
background noise
8

Similar Publications

Spatial transcriptomics (ST) offers enormous potential to decipher the biological and pathological heterogeneity in precious archival cancer tissues. Traditionally, these tissues have rarely been used and only examined at a low throughput, most commonly by histopathological staining. ST adds thousands of times as many molecular features to histopathological images, but critical technical issues and limitations require more assessment of how ST performs on fixed archival tissues.

View Article and Find Full Text PDF

Monocyte-Derived cxcl12 Guides a Directional Migration of Blood Vessels in Zebra Fish.

Arterioscler Thromb Vasc Biol

January 2025

School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China.

Background: Sprouting blood vessels, reaching the aimed location, and establishing the proper connections are vital for building vascular networks. Such biological processes are subject to precise molecular regulation. So far, the mechanistic insights into understanding how blood vessels grow to the correct position are limited.

View Article and Find Full Text PDF

Nanographenes and polycyclic aromatic hydrocarbons exhibit many intriguing physical properties and have potential applications across a range of scientific fields, including electronics, catalysis, and biomedicine. To accelerate the development of such applications, efficient and reliable methods for accessing functionalized analogs are required. Herein, we report the efficient synthesis of functionalized small nanographenes from readily available iodobiaryl and diarylacetylene derivatives a one-pot, multi-annulation sequence catalyzed by a single palladium catalyst.

View Article and Find Full Text PDF

Blood-based biomarkers have been revolutionizing the detection, diagnosis and screening of Alzheimer's disease. Specifically, phosphorylated-tau variants (p-tau, p-tau and p-tau) are promising biomarkers for identifying Alzheimer's disease pathology. Antibody-based assays such as single molecule arrays immunoassays are powerful tools to investigate pathological changes indicated by blood-based biomarkers and have been studied extensively in the Alzheimer's disease research field.

View Article and Find Full Text PDF

Background: Biomarkers are needed to track progression in MS trials. Neurofilament heavy chain (NfH) has been underutilized due to assay limitations.

Objective: To investigate the added value of cerebrospinal fluid (CSF) NfH in secondary progressive multiple sclerosis (SPMS) using contemporary immunoassays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!