Selecting High Zinc Wheat Cultivars Increases Grain Zinc Bioavailability.

J Agric Food Chem

State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.

Published: September 2021

Improving the concentration and bioavailability of zinc (Zn) in cereal grains is an important way to solve the problem of Zn deficiency in human body. The bioavailability of Zn is related to both its distribution and speciation in grains. In the current study, we examined the differences of Zn concentration, distribution, and speciation within grains among wheat cultivars with similar high grain yield but contrasting grain Zn concentration using synchrotron micro X-ray fluorescence (μ-XRF) and X-ray absorption near-edge structure (XANES). Results showed that compared to the low-Zn cultivar, the Zn concentration was 103, 50, 76, 33, and 64% higher in the crease region, aleurone layer, scutellum, embryonic axis, and endosperm of the high-Zn cultivar, respectively. Zinc mainly colocalized with phosphorus (P) in the aleurone layer and the scutellum, but less colocalization of Zn with P and a much lower concentration ratio of P/Zn were found in the high-Zn cultivar. Sulfur (S) is present in the form of scattered spots in the endosperm in accord with Zn, but the colocalization of Zn with S was predominant in the modified aleurone layer and the nucellar projection of the high-Zn cultivar. XANES results showed the lower proportion of Zn-phytate in the high-Zn cultivar. Findings indicated that it is possible to select the high-yield wheat cultivar with both high grain Zn concentration and high bioavailability, which provide a new perspective for genetic Zn biofortification.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.1c03166DOI Listing

Publication Analysis

Top Keywords

high-zn cultivar
16
aleurone layer
12
wheat cultivars
8
distribution speciation
8
speciation grains
8
high grain
8
grain concentration
8
layer scutellum
8
concentration
6
cultivar
6

Similar Publications

Inherently low concentrations of zinc (Zn), iron (Fe), iodine (I), and selenium (Se) in wheat ( L.) grains represent a major cause of micronutrient malnutrition (hidden hunger) in human populations. Genetic biofortification represents a highly useful solution to this problem.

View Article and Find Full Text PDF

Climate change-induced drought has an effect on the nutritional quality of wheat. Here, the impact of drought at different plant stages on mineral content in mature wheat was evaluated in 30 spring-wheat lines of diverse backgrounds (modern, old and wheat-rye-introgressions). Genotypes with rye chromosome 3R introgression showed a high accumulation of several important minerals, including Zn and Fe, and these also showed stability across drought conditions.

View Article and Find Full Text PDF

Crop plant remediation and detoxification of Zn-contaminated soils may pose a significant threat to food safety and, thus, human health. Therefore, the current study was carried out to assess the ability of six non-food crop plants (NFCP); Zea mays L. cultivar 360 (T360), Z.

View Article and Find Full Text PDF

Microorganisms can modulate the contents of cadmium (Cd) and zinc (Zn) in wheat grains. Increasing the essential nutrient element Zn and decreasing the toxic element Cd in wheat grains can significantly improve human health. To characterize the specific bacterial communities associated with Cd and Zn accumulation in wheat, we conducted a field experiment by planting wheat cultivars differing in their capacity for Cd and Zn accumulation.

View Article and Find Full Text PDF

A comparison study of physiological response and TaZIPs expression in seedlings of two wheat (Triticum aestivum L.) cultivars with contrasting grain zinc accumulation.

Plant Sci

May 2022

College of Resources and Environmental, Henan Agricultural University, Zhengzhou 450002, China; Key Laboratory of Soil Pollution Control and Remediation of Henan Province, Zhengzhou 450002, China. Electronic address:

Screening and breeding of high-Zn-accumulating wheat cultivars have received increasing attention in recent years. However, the exact mechanism of Zn uptake and accumulation in wheat is not fully understood. Here, we investigated the physiological responses and TaZIPs gene expression in a low (Zhengmai0856, ZM0856) and a high (Aikang58, AK58) grain-Zn-accumulating wheat cultivars under hydroponic conditions with different levels of Zn supply.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!