Developing earth-abundant transition metal (TM)-based electrocatalysts toward oxygen reduction reaction (ORR) is significant in overcoming the high cost of fuel cells. Herein, using an as-synthesized proton-conductive coordination polymer (termed TM-DHBQ) as a template, we investigate the ORR performance of a series of such TM-DHBQs via screening 3d, 4d, and 5d TMs. We find that most 3d TM-DHBQs exhibit distinguished durability under ORR turnover conditions. The formation energies of these TM-DHBQs and adsorption free energies of ORR intermediates show a good correlation with the number of outer electrons of TM ions in TM-DHBQs, enabling the formation energy as a robust ORR activity descriptor. The Sabatier-type volcano plot and microkinetic modeling coidentify Fe- and Co-DHBQs as two promising alternatives to Pt-based ORR electrocatalysts. For those TM-DHBQs showing strong bonding to oxygen species, the ORR intermediate is found to combine with the TM ion serving as the active center.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c02665DOI Listing

Publication Analysis

Top Keywords

coordination polymer
8
oxygen reduction
8
orr
7
tm-dhbqs
5
developing proton-conductive
4
proton-conductive metal
4
metal coordination
4
polymer highly
4
highly efficient
4
efficient electrocatalyst
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!