Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This article is a review of the findings of experimental and clinical studies of a new method of treatment of pulmonary hypertension - pulmonary artery denervation with the help of radiofrequency ablation, cryodenervation and ultrasonic impact. Pulmonary artery denervation results in decreased neurogenic tonic sympathetic and, probably, increased parasympathetic effects on pulmonary vessels. On models of experimental monocrotaline-induced pulmonary hypertension in various-species animals, it was determined that pulmonary artery denervation is followed by decreased activity of local pulmonary renin-angiotensin system, slowed processes of remodeling of pulmonary vessels, hypertrophy and fibrosis of the right ventricle, with inhibition of progression of pulmonary hypertension by means of suppression of extracellular signal-regulated kinase 1/2 (ERK 1/2) which regulates differentiation, proliferation and migration of smooth muscle cells. However, the problem of the pattern of pulmonary microcirculation changes (pre- and postcapillary resistance, capillary filtration coefficient) after pulmonary artery denervation warrants further study. The findings of clinical studies in patients with pulmonary hypertension suggest that pulmonary artery denervation inducing a decrease of pressure therein, as well as pulmonary vessel resistance did not lead to normalization of pulmonary haemodynamics.The mentioned impact partially removes the neurogenic component of multicircuit and multifactorial regulation of pulmonary circulation. Therefore, along with pulmonary artery denervation, further search for pharmacological agents selectively influencing pulmonary vessels remains a problem of current importance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.33529/ANGIO2021309 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!