Altered Peptide Self-Assembly and Co-Assembly with DNA by Modification of Aromatic Residues.

ChemMedChem

Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.

Published: December 2021

Aromatic residues are widely used as building blocks for driving self-assemblies in natural and designer biomaterials. The noncovalent interactions involving aromatic rings determine proteins' structure and biofunction. Here, we studied the effects of changes in the proximity of the aromatic rings in a self-assembling peptide for modulating interactions involving the aromatic residues. By changing the distance between the aromatic ring and peptide backbone and replacing the side chain with a sulfur atom, we altered the nanostructures and gene transfection efficiency of peptide-DNA co-assemblies. This study demonstrates the significance of subtle alterations in aromatic interactions and facilitates deeper understanding of the aromatic-involving interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cmdc.202100440DOI Listing

Publication Analysis

Top Keywords

aromatic residues
12
interactions involving
8
involving aromatic
8
aromatic rings
8
aromatic
7
altered peptide
4
peptide self-assembly
4
self-assembly co-assembly
4
co-assembly dna
4
dna modification
4

Similar Publications

Preparation, Thermal Properties and Decomposition Course of Highly Resistant Potato Starch Graft Poly(Cinnamyl Methacrylate) Materials.

Molecules

January 2025

Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Gliniana 33 Street, 20-614 Lublin, Poland.

The properties of starch graft poly(cinnamyl methacrylate) copolymers were presented. The "grafting from" method and different ratios of starch to methacrylic monomer were used. The copolymers with the maximum grafting percent (G: 55.

View Article and Find Full Text PDF

Elucidating the physicochemical interactions between fibrinogen and surfactant mixtures: Implications for pharmaceutical sciences.

Int J Biol Macromol

January 2025

Soft Matter and Molecular Biophysics Group, Department of Applied Physics and Institute of Materials (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.

This study investigates the physicochemical interactions between fibrinogen (Fib), a key glycoprotein in blood clotting, and a mixture of two biologically active compounds: dicloxacillin (Diclox), an antibiotic; and cetyltrimethylammonium bromide (CTAB), a cationic surfactant. Understanding these interactions is crucial for enhancing drug delivery systems and optimizing pharmaceutical formulations. Molecular docking simulations and various spectroscopic techniques, including UV-Vis, fluorescence, and circular dichroism, were employed to explore how this mixture affects the structural and functional properties of fibrinogen.

View Article and Find Full Text PDF

Unlabelled: Gram-negative bacteria play a pivotal role in the bioremediation of persistent organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs). Because the outer membrane (OM) of these bacteria hinders the direct permeation of hydrophobic substances into the cells, trans-OM proteins are required for the uptake of PAHs. However, neither the characteristics of PAH transporters nor the specific transport mechanism has been well interpreted.

View Article and Find Full Text PDF

Antarctic Krill Protein Amyloid Fibrils as a Novel Iron Carrier for the Improvement of Iron Deficiency.

J Agric Food Chem

January 2025

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

Iron fortification with food supplements remains the primary dietary strategy for improving iron deficiency anemia (IDA). This study used Antarctic krill protein for fibrillar design to form an Antarctic krill protein amyloid fibril (AKAF). The results indicated that peptides generated by proteolysis were a prerequisite for fibril assembly, forming elongated fibril structures and cross-linking upon heating.

View Article and Find Full Text PDF

Structure-based identification of HNF4α agonists: Rosmarinic acid as a promising candidate for NAFLD treatment.

Comput Struct Biotechnol J

December 2024

National Vaccine Innovation Platform, Scholl of Pharmacy, Nanjing Medical University, Nanjing 211166, China.

Unlabelled: The prevention and treatment of metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), have emerged as critical global health challenges. Current lipid-lowering pharmacotherapies are associated with side effects, including hepatotoxicity, rhabdomyolysis, and decreased erythrocyte counts, underscoring the urgent need for safer therapeutic alternatives. Hepatocyte nuclear factor 4α (HNF4α) has been identified as a pivotal regulator of lipid metabolism, making it an attractive target for drug development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!