The dynamic response of the human brain subjected to impulsive loading conditions is of fundamental importance to the understanding of traumatic brain injuries. Due to the complexity of such measurements, the existing experimental datasets available to researchers are sparse. However, these measurements are used extensively in the validation of complex finite element models used in the design of protective equipment and the development of injury mitigation strategies. The primary objective of this study was to develop a comprehensive methodology to measure displacement in specific anatomical regions of the brain. A state-of-the-art high-speed cineradiography system was used to capture brain motion in post-mortem human surrogate specimens at a rate of 7500 fps. This paper describes the methodology used to capture these data and presents measurements from these tests. Two-dimensional displacement fields are presented and analyzed based on anatomical regions of the brain. These data demonstrated a multi-modal displacement response in several regions of the brain. The full response of the brain consisted of an elastic superposition of a series of bulk rotations of the brain about its centre of gravity. The displacement field could be linked directly to specific anatomical regions. The methods presented mark an improvement in temporal and spatial resolution of data collection, which has implications for our developing understanding of brain trauma.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-021-02857-1DOI Listing

Publication Analysis

Top Keywords

anatomical regions
16
regions brain
12
brain
10
human surrogate
8
brain subjected
8
specific anatomical
8
regions
5
intracranial displacement
4
measurements
4
displacement measurements
4

Similar Publications

Unlabelled: The scientific and practical interest in studying the biomechanical characteristics of the lens capsule, on the one hand, is associated with its anatomical significance in modern microinvasive phaco surgery, and on the other hand, with investigation of the mechanisms of lens curvature changes during accommodation. Selective study of the biomechanical properties of the lens capsule aims to identify characteristics of various regions and surfaces of the capsule.

Purpose: This study is a comparative analysis of age-related changes in the biomechanical properties of the anterior (AC) and posterior (PC) lens capsules in humans.

View Article and Find Full Text PDF

Purpose: This study evaluated the impact of phacoemulsification cataract surgery (PE) on anatomical and functional parameters, as well as the regimen and frequency of anti-VEGF injections in patients with neovascular age-related macular degeneration (nAMD) over a long-term period (up to 3 years).

Material And Methods: The study included 117 patients (117 eyes) diagnosed with nAMD and cataract, graded by LOCS: LOCS I (=56; 47.9%), LOCS II (=57; 48.

View Article and Find Full Text PDF

To explore the internal factors related to the strong growth and competitive ability of weedy rice during the seedling period, we collected two biotypes of Japonica weedy rice from Northeast China, four biotypes of Indica weedy rice from Eastern China and Southern China, and two biotypes of cultivated rice, Zhendao-8 (ZD-8) and Shanyou-63 (SY-63), which were used as controls in a pot experiment. Under homogeneous garden planting conditions, we measured the vascular bundle size (VBS), vascular bundle number (VBN), leaf thickness (LT), air cavity size (ACS), stomatal size (SS), stomatal density (SD), net photosynthetic rate (Pn) and stomatal conductance (Gs) of the weedy and cultivated rice biotypes. A comprehensive analysis was performed to explore the correlation between the seedling leaf structure and the photosynthetic indices of the biotypes.

View Article and Find Full Text PDF

Multi-modal medical images are important in tumor lesion detection. However, the existing detection models only use single-modal to detect lesions, a multi-modal semantic correlation is not enough to consider and lacks ability to express the shape, size, and contrast degree features of lesions. A Cross Modal YOLOv5 model (CMYOLOv5) is proposed.

View Article and Find Full Text PDF

Update on the connectivity of the paraventricular nucleus of the thalamus and its position within limbic corticostriatal circuits.

Neurosci Biobehav Rev

December 2024

Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0W2, Canada. Electronic address:

The paraventricular nucleus of the thalamus (PVT) is generating interest because of evidence establishing a role for this midline thalamic nucleus in behavior. Early tracing studies demonstrated that afferent fibers from the PVT and limbic cortex converge with dopamine fibers within subcompartments of the ventral striatum. Subsequent tracing studies expanded on these observations by establishing that the PVT provides a dense projection to a continuum of striatal-like regions that include the nucleus accumbens and the extended amygdala.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!