A dual signal-amplified sandwich electrochemiluminescence (ECL) immunosensor was fabricated for trace detection of procalcitonin (PCT). CeO-Au@Pt composed of sea urchin-like Au@Pt nanoparticles coated on CeO hollow nanospheres was immobilized on electrode surface to electrochemically catalyze HO to produce a large number of superoxide anion (O). The immunosensor was prepared by linking the capture antibody on immobilized CeO-Au@Pt with heptapeptide (HWRGWVC), which could maintain the activity of the antibody. The prepared Au star@BSA was used to bind abundant luminol for labeling the secondary antibody (Ab). Upon the sandwich-typed immunoreactions, the O could react with the introduced luminol on the immunosensor surface to produce strong ECL intensity. With an outstanding linear detection range and a low detection limit of 17 fg/mL, the ECL immunosensor permitted ultrasensitive detection of PCT at a low HO concentration and demonstrated its high application potential in the clinical assay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-021-04988-7 | DOI Listing |
Biosens Bioelectron
January 2025
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui, 230026, China. Electronic address:
Reliable detection of Aquaporin-4 (AQP4) antibodies is crucial for diagnosing Neuromyelitis Optica spectrum disorder (NMOSD). However, cell-based assays, the most reliable approach, are limited by inadequate instruments. This study reports the use of silver metal-organic gels (Ag-MOGs) as coreactants in a single-electrode electrochemical system (SEES)-based electrochemiluminescence (ECL) immunosensor for multiplex detection of AQP4 antibodies.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China. Electronic address:
The adjustment of the electrochemiluminescence (ECL) of polymeric carbon nitride (CN) is essential for its application in sensitive immunoassays. However, such modification through aggregation-induced emission (AIE) has not yet been reported. Herein, aggregation-induced ECL in CN oligomer (CNO) was induced through the introduction of a rotatable imine moiety, with the resulting material exhibiting excellent performance in the targeted immunodetection of neuron-specific enolase.
View Article and Find Full Text PDFMikrochim Acta
December 2024
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
An electrochemiluminescence (ECL) immunosensor was developed for the highly sensitive and specific detection of heart-type fatty acid binding protein (H-FABP) and the rapid diagnosis of acute myocardial infarction (AMI). H-FABP is a biomarker that is highly specific to cardiac tissue and is associated with a range of cardiac diseases. Following myocardial injury, the rate of increase in H-FABP levels is greater than that observed for myoglobin and troponin.
View Article and Find Full Text PDFChemistry
December 2024
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
Currently, metal-organic frameworks (MOFs) with tunability and covalent organic frameworks (COFs) with high stability are promising nanomaterials for electrochemiluminescence (ECL), while Ru-based metal covalent organic frameworks (Ru-MCOFs) have rarely been reported. Herein, an ECL immunosensor based on a strong ECL-emitting Ru-MCOF was proposed for the sensitive detection of the cardiac troponin-I (cTnI). Imine-linked Ru-MCOF was prepared as an ECL emitter via solvothermal method using tris (4,4' -diamino-2,2' -bipyridine) ruthenium (II) (Ru(dbpy) ) as a precursor.
View Article and Find Full Text PDFTalanta
December 2024
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China. Electronic address:
In this study, we used meso-tetra (4-carboxyphenyl) porphyrin (TCPP) as an organic ligand to modify a lanthanide-based metal-organic framework as an electrochemiluminescence (ECL) platform to sensitively detect anti-Müllerian hormone (AMH). La-MOF amplified the ECL signal by suppressing the aggregation-caused quenching created by TCPP self-aggregation. Utilizing the reversible cycling of the mixed-valence transition metal ion (Cu/Cu and Mo/Mo) and the electrical conductivity of CuMoS and silver nanoparticle (AgNP), CuMoS-AgNP as a dual co-reaction promoter constantly generated sulfate radical anions (SO) and thus amplified the ECL signal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!