A carbon-based material with a hierarchical structure and intrinsic heteroatom sites for sodium-ion storage with ultrahigh rate and capacity.

Nanoscale

State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Xiamen University, Xiamen, Fujian 361005, China.

Published: October 2021

The storage of sodium ions with carbon materials has huge potential for large-scale application due to its resource-rich and environmental advantages. However, how to realize high power density, high energy density and long cycle life are the bottlenecks restricting its development. Herein, by using a facile synthesis strategy, a carbon-based framework with a hierarchical structure and intrinsic heteroatom sites which are the characteristics contributing to ultrahigh rate and capacity has been achieved. As a result, the hierarchical carbon-based material exhibits excellent performance when used as both the anode and cathode for sodium-ion capacitors (SICs), which can deliver a high energy density of 224 W h kg (at 180 W kg), an ultrahigh power density of 17 160 W kg (at 128 W h kg) and ultralong cycle life (91% capacity retention after 10 000 cycles at 2 A g), outperforming most of the previously reported SICs with other configurations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr04457eDOI Listing

Publication Analysis

Top Keywords

carbon-based material
8
hierarchical structure
8
structure intrinsic
8
intrinsic heteroatom
8
heteroatom sites
8
ultrahigh rate
8
rate capacity
8
power density
8
high energy
8
energy density
8

Similar Publications

Selective O/N Separation Using Grazyne Membranes: A Computational Approach Combining Density Functional Theory and Molecular Dynamics.

Nanomaterials (Basel)

December 2024

Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain.

The separation of oxygen (O) and nitrogen (N) from air is a process of utmost importance nowadays, as both species are vital for numerous fundamental processes essential for our development. Membranes designed for their selective molecule separation have become the materials of choice for researchers, primarily due to their ease of use. The present study proposes grazynes, 2D carbon-based materials consisting of and C atoms, as suitable membranes for separating O and N from air.

View Article and Find Full Text PDF

Advances in Surface-Enhanced Raman Spectroscopy for Urinary Metabolite Analysis: Exploiting Noble Metal Nanohybrids.

Biosensors (Basel)

November 2024

Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China.

This review examines recent advances in surface-enhanced Raman spectroscopy (SERS) for urinary metabolite analysis, focusing on the development and application of noble metal nanohybrids. We explore the diverse range of hybrid materials, including carbon-based, metal-organic-framework (MOF), silicon-based, semiconductor, and polymer-based systems, which have significantly improved SERS performance for detecting key urinary biomarkers. The principles underlying SERS enhancement in these nanohybrids are discussed, elucidating both electromagnetic and chemical enhancement mechanisms.

View Article and Find Full Text PDF

Enhanced electro-catalysis for methanol oxidation reaction performance by edge defects of ordered mesoporous carbon.

J Colloid Interface Sci

December 2024

School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China; Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, PR China.

Heteroatom-doped carbon materials are widely used to improve the electrocatalytic oxidation of methanol; however, the underlying mechanisms driving this enhancement remain poorly understood. A major challenge lies in developing non-doped carbon supports with tunable intrinsic defect types tailored for metal-based catalysts. In this study, we synthesize a series of ordered mesoporous carbon (OMC) supports with adjustable edge defect densities by varying roasting temperatures and employing a zinc (Zn) evaporation strategy to systematically investigate the impact of edge defects on methanol oxidation reaction (MOR) performance.

View Article and Find Full Text PDF

Epitaxy Orientation and Kinetics Diagnosis for Zinc Electrodeposition.

ACS Nano

December 2024

College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, P. R. China.

An accurate assessment of the electrodeposition mechanism is essential for evaluating the electrochemical stability and reversibility of the metal anodes. Multiple strategies aimed at uniform Zn deposition have been extensively reported, yet it is challenging to clarify the Zn crystal growth regularity and activity due to the obscured physicochemical properties of as-deposited Zn. Herein, we present a protocol for elucidating the controlled epitaxial growth process of Zn crystals and quantifying their surface electrochemical activity using scanning electrochemical microscopy.

View Article and Find Full Text PDF

Graphdiyne based ZnCdS and NiO dual S-scheme heterojunction boosting photocatalytic hydrogen evolution.

J Colloid Interface Sci

December 2024

School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China. Electronic address:

As a novel carbon-based material with two-dimensional (2D) characteristics, graphdiyne (GDY) shows great potential in constructing active catalytic sites due to its distinctive atomic configuration and sp/sp conjugated hybrid two-dimensional networks. In this study, the layered GDY was synthesized using the ball milling method, and ZnCdS/Graphdiyne/NiO (ZnCdS/GDY/NiO) composite was synthesized by in-situ composite and physical mixing method. The prepared ZnCdS/GDY/NiO has good photostability outstanding performance in photocatalytic hydrogen production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!