AI Article Synopsis

  • Researchers conducted a picosecond pulse radiolysis study on concentrated uridine monophosphate solutions, finding unexpected results regarding the oxidation of nucleobases, which were not detected after electron pulses.
  • They explored charge-transfer mechanisms using advanced atomistic simulations and Density Functional Theory (DFT), analyzing mechanisms over different timescales (atto-, femto-, pico-seconds).
  • The study concluded that electronic decoherence and electronic coupling strength play crucial roles in the reactions that occur in biological matter under ionizing radiation, providing insights into the early events after radiation exposure.

Article Abstract

The early mechanisms by which ionizing rays damage biological structures by so-called direct effects are largely elusive. In a recent picosecond pulse radiolysis study of concentrated uridine monophosphate solutions [J. Ma, S. A. Denisov, J.-L. Marignier, P. Pernot, A. Adhikary, S. Seki and M. Mostafavi, , 2018, , 5105], unexpected results were found regarding the oxidation of the nucleobase. The signature of the oxidized nucleobase could not be detected 5 ps after the electron pulse, but only the oxidized phosphate, raising intriguing questions about the identity of charge-transfer mechanisms that could explain the absence of U. We address here this question by means of advanced first-principles atomistic simulations of solvated uridine monophosphate, combining Density Functional Theory (DFT) with polarizable embedding schemes. We contrast three very distinct mechanisms of charge transfer covering the atto-, femto- and pico-second timescales. We first investigate the ionization mechanism and subsequent hole/charge migrations on a timescale of attoseconds to a few femtoseconds under the frozen nuclei approximation. We then consider a nuclear-driven phosphate-to-oxidized-nucleobase electron transfer, showing that it is an uncompetitive reaction channel on the sub-picosecond timescale, despite its high exothermicity and significant electronic coupling. Finally, we show that non-adiabatic charge transfer is enabled by femtosecond nuclear relaxation after ionization. We show that electronic decoherence and the electronic coupling strength are the key parameters that determine the hopping probabilities. Our results provide important insight into the interplay between electronics and nuclear motions in the early stages of the multiscale responses of biological matter subjected to ionizing radiation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp06482cDOI Listing

Publication Analysis

Top Keywords

charge transfer
12
uridine monophosphate
12
electronic coupling
8
mystery sub-picosecond
4
sub-picosecond charge
4
transfer
4
transfer irradiation
4
irradiation hydrated
4
hydrated uridine
4
monophosphate early
4

Similar Publications

Heterojunctions, known for their decent separation of photo-generated electrons and holes, are promising for photocatalytic CO reduction. However, a significant obstacle in traditional post-assembled heterojunctions is the high interfacial barrier for charge transfer caused by atomic lattice mismatch at multiphase interfaces. Here, as research prototypes, the study creates a lattice-matched co-atomic interface within CsPbBr-CsPbBr polytypic nanocrystals (113-125 PNs) through the proposed in situ hybrid strategy to elucidate the underlying charge transfer mechanism within this unique interface.

View Article and Find Full Text PDF

Embedding techniques allow the efficient description of correlations within localized fragments of large molecular systems while accounting for their environment at a lower level of theory. We introduce FragPT2: a novel embedding framework that addresses multiple interacting active fragments. Fragments are assigned separate active spaces, constructed by localizing canonical molecular orbitals.

View Article and Find Full Text PDF

Dynamic random access memory (DRAM) has been a cornerstone of modern computing, but it faces challenges as technology scales down, particularly due to the mismatch between reduced storage capacitance and increasing OFF current. The capacitorless 2T0C DRAM architecture is recognized for its potential to offer superior area efficiency and reduced refresh rate requirements by eliminating the traditional capacitor. The exploration of two-dimensional (2D) materials further enhances scaling possibilities, though the absence of dangling bonds complicates the deposition of high-quality dielectrics.

View Article and Find Full Text PDF

Composite coatings reinforced with varying mass fractions of SiC particles were successfully fabricated on 316 stainless steel substrates via laser cladding. The phase compositions, elemental distribution, microstructural characteristics, hardness, wear resistance and corrosion resistance of the composite coatings were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Vickers hardness testing, friction-wear testing and electrochemical methods. The coatings have no obvious pores, cracks or other defects.

View Article and Find Full Text PDF

Photoelectrochemical sensors have been studied for glucose detection because of their ability to minimize background noise and unwanted reactions. Titanium dioxide (TiO), a highly efficient material in converting light into electricity, cannot utilize visible light. In this regard, we developed a nonenzymatic glucose sensor by using a simple one-step electrospinning technique to combine cupric oxide with TiO to create a heterojunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!