Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Of the thousands of per- and polyfluoroalkyl substances (PFAS) in the environment, few have been investigated in detail. In this study, we analyzed 36 legacy and emerging PFAS in multiple seabird tissues collected from individuals from Massachusetts Bay, Narragansett Bay and the Cape Fear River Estuary. PFOS was the dominant compound across multiple tissues, while long-chain perfluorinated carboxylic acids (PFCAs) dominated in brain (mean = 44% of total concentrations). Emerging perfluoroalkyl ether acids (PFEAs)-Nafion byproduct-2 and PFO5DoDA - were detected in greater than 90% of tissues in birds obtained from a nesting region downstream from a major fluorochemical production site. Compound ratios, relative body burden calculations, and electrostatic surface potential calculations were used to describe partitioning behavior of PFEAs in different tissues. Novel PFEAs preferentially partition into blood compared to liver, and were documented in brain for the first time. PFO5DoDA showed a reduced preference for brain compared to PFCAs and Nafion BP2. These results suggest future monitoring efforts and toxicological studies should focus on novel PFAS and long-chain PFCAs in multiple tissues beyond liver and blood, while exploring the unique binding mechanisms driving uptake of multi-ether PFEAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8437152 | PMC |
http://dx.doi.org/10.1021/acs.estlett.1c00222 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!