Typical carcinoids (TC), atypical carcinoids (AC), large cell neuroendocrine carcinomas (LCNEC), and small cell lung carcinomas (SCLC) encompass a bimodal spectrum of metastatic tumors with morphological, histological and histogenesis differences, The hierarchical structure reveals high cohesiveness between neoplastic cells by mechanical desmosomes barrier assembly in carcinoid tumors and LCNEC, while SCLC does not present an organoid arrangement in morphology, the neoplastic cells are less cohesive. However, the molecular mechanisms that lead to PNENs metastasis remain largely unknown and require further study. In this work, epithelial to mesenchymal transition (EMT) transcription factors were evaluated using a set of twenty-four patients with surgically resected PNENs, including carcinomas. Twelve EMT transcription factors (, , , , , , , , , , , and ) proved to be highly expressed among carcinomas and downregulated in carcinoid tumors, whereas upregulation of , , and downregulation of , , occurred in both histological subtypes. These EMT transcription factors identified were involved in proliferative signals, epithelium desmosomes assembly, and cell motility sequential steps that support PNENs invasion and metastasis in localized surgically resected primary tumor. We used a two-stage design where we first examined the candidate EMT transcription factors using a whole-genome screen, and subsequently, confirmed EMT-like changes by transmission electron microscopy and then, the EMT-related genes that were differentially expressed among PNENs subtypes were predicted through a Metascape analysis by in silico approach. A high expression of these EMT transcription factors was significantly associated with lymph node and distant metastasis. The sequential steps for invasion and metastasis were completed by an inverse association between functional barrier created by PD-L1 immunosuppressive molecule and EMT transcriptional factors. Our study implicates upregulation of EMT transcription factors to high proliferation rates, mechanical molecular barriers disassembly and increased cancer cell motility, as a critical molecular event leading to metastasis risk in PNENs thus emerging as a promising tool to select and customize therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8435885PMC
http://dx.doi.org/10.3389/fonc.2021.645623DOI Listing

Publication Analysis

Top Keywords

emt transcription
24
transcription factors
24
neoplastic cells
8
carcinoid tumors
8
surgically resected
8
cell motility
8
sequential steps
8
invasion metastasis
8
emt
7
factors
7

Similar Publications

Background: The most common malignant type of kidney cancer is clear cell renal cell carcinoma (ccRCC). The expression levels of hyaluronan-mediated motility receptor (HMMR) in many tumor types are significantly elevated. HMMR is closely associated with tumor-related progression, treatment resistance, and poor prognosis, and has yet to be fully investigated in terms of its expression patterns and molecular mechanisms of action in ccRCC.

View Article and Find Full Text PDF

LOX-induced tubulointerstitial fibrosis via the TGF-β/LOX/Snail axis in diabetic mice.

J Transl Med

January 2025

Department of Basic Medical Sciences, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.

Background: The partial epithelial-mesenchymal transition (EMT) is emerging as a significant mechanism in diabetic nephropathy (DN). LOX is a copper amine oxidase conventionally thought to act by crosslinking collagen. However, the role of LOX in partial EMT and fibrotic progression in diabetic nephropathy has not been investigated experimentally.

View Article and Find Full Text PDF

An antagonistic role of clock genes and lima1 in kidney regeneration.

Commun Biol

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China.

The circadian clock genes are known important for kidney development, maturation and physiological functions. However, whether and how they play a role in renal regeneration remain elusive. Here, by using the single cell RNA-sequencing (scRNA-seq) technology, we investigated the dynamic gene expression profiles and cell states after acute kidney injury (AKI) by gentamicin treatment in zebrafish.

View Article and Find Full Text PDF

Alleviation of liver fibrosis by inhibiting a non-canonical ATF4-regulated enhancer program in hepatic stellate cells.

Nat Commun

January 2025

Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.

Liver fibrosis is a critical liver disease that can progress to more severe manifestations, such as cirrhosis, yet no effective targeted therapies are available. Here, we identify that ATF4, a master transcription factor in ER stress response, promotes liver fibrosis by facilitating a stress response-independent epigenetic program in hepatic stellate cells (HSCs). Unlike its canonical role in regulating UPR genes during ER stress, ATF4 activates epithelial-mesenchymal transition (EMT) gene transcription under fibrogenic conditions.

View Article and Find Full Text PDF

miR-155 exhibits variable expression in different tumors and fulfills diverse biological roles. However, specific molecular mechanisms by which miR-155-5p, which is under-expressed in prostate cancer (PCa), operates are yet to be elucidated. The role of the enhancer of zeste 2 (EZH2)/miR-155-5p axis in PCa was determined by using bioinformatics tools and performing luciferase reporter assay, chromatin immunoprecipitation PCR, CCK-8 assays, cell migration and invasion assays, RNA isolation, reverse transcription quantity (RT-qPCR) and Western blot.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!