Multi-zonal segmentation is a critical component of computer-aided diagnostic systems for detecting and staging prostate cancer. Previously, convolutional neural networks such as the U-Net have been used to produce fully automatic multi-zonal prostate segmentation on magnetic resonance images (MRIs) with performance comparable to human experts, but these often require large amounts of manually segmented training data to produce acceptable results. For institutions that have limited amounts of labeled MRI exams, it is not clear how much data is needed to train a segmentation model, and which training strategy should be used to maximize the value of the available data. This work compares how the strategies of transfer learning and aggregated training using publicly available external data can improve segmentation performance on internal, site-specific prostate MR images, and evaluates how the performance varies with the amount of internal data used for training. Cross training experiments were performed to show that differences between internal and external data were impactful. Using a standard U-Net architecture, optimizations were performed to select between 2D and 3D variants, and to determine the depth of fine-tuning required for optimal transfer learning. With the optimized architecture, the performance of transfer learning and aggregated training were compared for a range of 5-40 internal datasets. The results show that both strategies consistently improve performance and produced segmentation results that are comparable to that of human experts with approximately 20 site-specific MRI datasets. These findings can help guide the development of site-specific prostate segmentation models for both clinical and research applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8438764 | PMC |
http://dx.doi.org/10.1109/access.2021.3100585 | DOI Listing |
Heliyon
January 2025
Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
Neurosignaling is increasingly recognized as a critical factor in cancer progression, where neuronal innervation of primary tumors contributes to the disease's advancement. This study focuses on segmenting individual axons within the prostate tumor microenvironment, which have been challenging to detect and analyze due to their irregular morphologies. We present a novel deep learning-based approach for the automated segmentation of axons, AxonFinder, leveraging a U-Net model with a ResNet-101 encoder, based on a multiplexed imaging approach.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Department of Medical Imaging, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
: Prostate cancer (PCa) is the most frequent neoplasia in the male population. According to the International Society of Urological Pathology (ISUP), PCa can be divided into two major groups, based on their prognosis and treatment options. Multiparametric magnetic resonance imaging (mpMRI) holds a central role in PCa assessment; however, it does not have a one-to-one correspondence with the histopathological grading of tumors.
View Article and Find Full Text PDFComput Biol Med
January 2025
Fraunhofer Institute for Digital Medicine MEVIS, Bremen/Lübeck/Aachen, Germany.
Due to the increasing workload of pathologists, the need for automation to support diagnostic tasks and quantitative biomarker evaluation is becoming more and more apparent. Foundation models have the potential to improve generalizability within and across centers and serve as starting points for data efficient development of specialized yet robust AI models. However, the training of foundation models themselves is usually very expensive in terms of data, computation, and time.
View Article and Find Full Text PDFPhys Eng Sci Med
January 2025
School of Physics, Mathematics and Computing, University of Western Australia, Crawley, WA, Australia.
Prostate cancer is a significant global health issue due to its high incidence and poor outcomes in metastatic disease. This study aims to develop models predicting overall survival for patients with metastatic biochemically recurrent prostate cancer, potentially helping to identify high-risk patients and enabling more tailored treatment options. A multi-centre cohort of 180 such patients underwent [Ga]Ga-PSMA-11 PET/CT scans, with lesions semi-automatically segmented and radiomic features extracted from lesions.
View Article and Find Full Text PDFInt Urol Nephrol
January 2025
Department of Ultrasound, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, No. 2 Jiefang Road, Xiling District, Yichang, Hubei, China.
Objective: A prostate ultrasound (US) imaging omics model was established to assess its effectiveness in diagnosing prostate cancer (PCa), predicting Gleason score (GS), and determining the likelihood of distant metastasis.
Methods: US images of patients with prostate pathology confirmed by biopsy or surgery at our hospital were retrospectively analyzed. Regions of interest (ROI) segmentation, feature extraction, feature screening, and the construction and training of the radiomics model were performed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!