Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Thoracic surgeons must be familiar with the anatomy of the pulmonary artery during segmentectomy and segmentectomy. But pulmonary arteries have numerous variations and aberrant branching patterns. The purpose of the present study was to analyze the anatomical variations and frequencies of the lingular artery of the left upper lobe (LUL) using 3D computed tomography angiography and bronchography (3D-CTAB).
Methods: We retrospectively studied 166 patients having undergone lobectomy or segmentectomy from January to December 2020 at Fujian Medical University Cancer Hospital's Department of Thoracic Surgery. All patients underwent 3D reconstruction using 3D-CTAB before surgery.
Results: The lingular segment was supplied by 1 artery in 45.18% of cases, 2 arteries in 46.39% of cases, and 3 arteries in 8.43% of cases. The branching patterns of the lingular artery included 119 (71.68%) cases with interlobar origin, 35 (21.08%) cases with interlobar and mediastinal origin, and 13 (7.83%) cases with mediastinal origin. The interlobar lingular artery include superior lingular artery (A4) and inferior lingular artery (A5). The interlobar lingular artery type was A4a, A4b, A5 in 7.23% of cases; A4 and A4b+5 in 3.01% of cases; and A4b and A4a+5 in 4.82% of cases. The mediastinal lingular artery was divided into the following 5 types: 'A4', 'A4b', 'A4b+5', 'A4b+5a', and 'A4+5'. The most common type was A4 (12.05%, 20/166) in 166 patients. The interlobar lingular artery had the following 5 patterns of variation: 'A4+5', 'A4, A5', 'A4a, A4b, A5', 'A4a, A4b+5', and 'A4b, A4a+5'. The single interlobar lingular artery (A4+5) was the most common type in 38.55% of cases. In 24.10% of cases, A5 came from A8 or A8+9. Besides In 8.43% of cases, the origin of A5 was close to A8 or A8+9.
Conclusions: We identified the left various lingular artery branching patterns with 3D-CTAB in patients and defined the frequency of anatomic variations. 3D-CTAB is useful for finding these variations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8411136 | PMC |
http://dx.doi.org/10.21037/jtd-21-1141 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!