With thousands of vertebrate species now threatened with extinction, there is an urgent need to understand and mitigate the causes of wildlife collapse. Rails (Aves: Rallidae), being the most extinction-prone bird family globally, and with one-third of extant rail species now threatened or near threatened, are an emphatic case in point. Here, we undertook a global synthesis of the temporal and spatial threat patterns for Rallidae and determined conservation priorities and gaps. We found two key pathways in the threat pattern for rails. One follows the same trajectory as extinct rails, where island endemic and flightless rails are most threatened, mainly due to invasive predators. The second, created by the diversification of anthropogenic activities, involves continental rails, threatened mainly by agriculture, natural system modifications, and residential and commercial development. Indonesia, the USA, the United Kingdom, New Zealand and Cuba were the priority countries identified by our framework incorporating species' uniqueness and the level of endangerment, but also among the countries that lack conservation actions the most. Future efforts should predominantly target improvements in ecosystem protection and management, as well as ongoing research and monitoring. Forecasting the impacts of climate change on island endemic rails will be particularly valuable to protect rails.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8424349 | PMC |
http://dx.doi.org/10.1098/rsos.210262 | DOI Listing |
PLoS One
May 2022
Department of Zoology, University of Otago, Dunedin, New Zealand.
Anthropogenic changes can have dramatic effects on wild populations. Moreover, by promoting the emergence of vector-borne diseases in many ecosystems, those changes can lead to local extinction of native wildlife. One of those diseases, avian malaria, has been shown to be on the rise in New Zealand, threatening native bird species that are among the most extinction-prone in the world.
View Article and Find Full Text PDFEcol Lett
March 2022
Department of Life Sciences, Imperial College London, Silwood Park, UK.
Increases in biodiversity often lead to greater, and less variable, levels of ecosystem functioning. However, whether species are less likely to go extinct in more diverse ecosystems is unclear. We use comprehensive estimates of avian taxonomic, phylogenetic and functional diversity to characterise the global relationship between multiple dimensions of diversity and extinction risk in birds, focusing on contemporary threat status and latent extinction risk.
View Article and Find Full Text PDFR Soc Open Sci
September 2021
School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia.
With thousands of vertebrate species now threatened with extinction, there is an urgent need to understand and mitigate the causes of wildlife collapse. Rails (Aves: Rallidae), being the most extinction-prone bird family globally, and with one-third of extant rail species now threatened or near threatened, are an emphatic case in point. Here, we undertook a global synthesis of the temporal and spatial threat patterns for Rallidae and determined conservation priorities and gaps.
View Article and Find Full Text PDFEcol Lett
November 2021
Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
The Tree of Life will be irrevocably reshaped as anthropogenic extinctions continue to unfold. Theory suggests that lineage evolutionary dynamics, such as age since origination, historical extinction filters and speciation rates, have influenced ancient extinction patterns - but whether these factors also contribute to modern extinction risk is largely unknown. We examine evolutionary legacies in contemporary extinction risk for over 4000 genera, representing ~30,000 species, from the major tetrapod groups: amphibians, birds, turtles and crocodiles, squamate reptiles and mammals.
View Article and Find Full Text PDFPLoS One
August 2017
Biological Sciences Department, Lincoln University, Lincoln, New Zealand.
Animal pollinators and the plants they pollinate depend on networks of mutualistic partnerships and more broadly on the stability of such networks. Based mainly on insect-plant visitation networks, theory predicts that species that are most prone to extinction contribute the most to nestedness, however empirical tests are rare. We used a sunbird-tree visitation network within which were both extinction prone vs non extinction prone sunbird species to test the idea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!