Typically, large ungulates show a single seasonal peak of heart rate, a proxy of energy expenditure, in early summer. Different to other large ungulates, wild boar females had peak heart rates early in the year (at ~ April, 1), which likely indicates high costs of reproduction. This peak was followed by a trough over summer and a secondary summit in autumn/early winter, which coincided with the mast seeding of oak trees and the mating season. Wild boars counteracted the effects of cold temperatures by decreasing subcutaneous body temperature by peripheral vasoconstriction. They also passively gained solar radiation energy by basking in the sun. However, the shape of the seasonal rhythm in HR indicates that it was apparently not primarily caused by thermoregulatory costs but by the costs of reproduction. Wild boar farrow early in the year, visible in high HRs and sudden changes in intraperitoneal body temperature of females. Arguably, a prerequisite for this early reproduction as well as for high energy metabolism over winter is the broad variety of food consumed by this species, i.e., the omnivorous lifestyle. Extremely warm and dry summers, as experienced during the study years (2017, 2018), may increasingly become a bottleneck for food intake of wild boar.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8443605 | PMC |
http://dx.doi.org/10.1038/s41598-021-97825-z | DOI Listing |
Viruses
December 2024
National Bio- and Agro-Defense Facility, Agricultural Research Services, United States Department of Agriculture, Manhattan, KS 66506, USA.
During the past 25 years, vesicular stomatitis virus (VSV) has produced multiple outbreaks in the US, resulting in the emergence of different viral lineages. Currently, very little is known about the pathogenesis of many of these lineages, thus limiting our understanding of the potential biological factors favoring each lineage in these outbreaks. In this study, we aimed to determine the potential phenotypic differences between two VSV Indiana (VSIV) serotype epidemic strains using a pig model.
View Article and Find Full Text PDFViruses
December 2024
Federal Centre for Animal Health, 600901 Vladimir, Russia.
The lack of data on the whole-genome analysis of genotype II African swine fever virus (ASFV) isolates significantly hinders our understanding of its molecular evolution, and as a result, the range of single nucleotide polymorphisms (SNPs) necessary to describe a more accurate and complete scheme of its circulation. In this regard, this study aimed to identify unique SNPs, conduct phylogenetic analysis, and determine the level of homology of isolates obtained in the period from 2019 to 2022 in the central and eastern regions of Russia. Twenty-one whole-genome sequences of genotype II ASFV isolates were assembled, analyzed, and submitted to GenBank.
View Article and Find Full Text PDFViruses
December 2024
Friedrich-Loeffler-Institut Institute of Epidemiology, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
African swine fever (ASF) emerged in Germany in 2020. A few weeks after the initial occurrence, infected wild boar were detected in Saxony. In this study, data from wild boar surveillance in Saxony were analyzed.
View Article and Find Full Text PDFViruses
November 2024
Microbiology and Clinical Microbiology Section, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy.
Hepatitis E virus (HEV) is a global health problem, causing an estimated 20 million infections annually. Thus, the management of HEV requires special consideration. In developed countries, hepatitis E is mainly recognized as a foodborne disease (mainly transmitted via undercooked meat consumption) that is generally caused by genotype 3 and 4 circulating in various animals, including pigs and wild boars.
View Article and Find Full Text PDFMicroorganisms
December 2024
Moredun Research Institute, Pentlands Science Park, Midlothian, Edinburgh EH26 0PZ, UK.
Sheep-associated malignant catarrhal fever (SA-MCF) is a severe lymphoproliferative vascular disease of cattle that is caused by ovine gammaherpesvirus 2 (OvGHV2), which is a within the subfamily. SA-MCF occurs worldwide in several mammalian hosts. Alternatively, alcelaphine gammaherpesvirus 1 (AlGHV1) is a that causes wildebeest-associated malignant catarrhal fever (MCF), which principally occurs in cattle from Africa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!