After the largest mining tailings spill in Brazil, the Rio Doce estuarine ecosystem was severely impacted by metal contamination. In a 28-day laboratory experiment, we examined the effects of the polychaeta Laeonereis sp. on fluxes of oxygen and metal across the sediment-water interface. The density-dependent effect of Laeonereis sp. in the oxygen and metal fluxes was tested at low and high (74 and 222 ind m, respectively) densities, and compared with defaunated controls. The higher worm density had an amplified effect on the oxygen flux, sediment uptake of Al and Mn, and Fe oxidation compared with the control, but no significant effects on other metals (Ba, Cd, Co, Cr, Cu, Ni, and Zn). Higher worm density increased the oxidation of Fe phases, but no effect in the solid phase of other metals. Consequently, Laeonereis sp. bioturbation prevents the reduction of Fe phases and the release of metal-bound-contaminants to estuarine systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2021.112912 | DOI Listing |
Pharmaceutics
December 2024
Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi 832003, China.
With the increase of reactive oxygen species (ROS) production, cancer cells can avoid cell death and damage by up-regulating antioxidant programs. Therefore, it will be more effective to induce cell death by using targeted strategies to further improve ROS levels and drugs that inhibit antioxidant programs. Considering that dihydroartemisinin (DHA) can cause oxidative damage to protein, DNA, or lipids by producing excessive ROS, while, disulfiram (DSF) can inhibit glutathione (GSH) levels and achieve the therapeutic effect by inhibiting antioxidant system and amplifying oxidative stress, they were co-loaded onto the copper peroxide nanoparticles (CuO) coated with copper tannic acid (Cu-TA), to build a drug delivery system of CuO@Cu-TA@DSF/DHA nanoparticles (CCTDD NPs).
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Excessive copper (Cu) has become a common physiological disorder restricting the sustainable production of citrus. Coumarin (COU) is a hydroxycinnamic acid that can protect plants from heavy metal toxicity. No data to date are available on the ameliorative effect of COU on plant Cu toxicity.
View Article and Find Full Text PDFMicroorganisms
November 2024
School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430078, China.
Iron, Earth's most abundant redox-active metal, undergoes both abiotic and microbial redox reactions that regulate the formation, transformation, and dissolution of iron minerals. The electron transfer between ferrous iron (Fe(II)) and ferric iron (Fe(III)) is critical for mineral dynamics, pollutant remediation, and global biogeochemical cycling. Bacteria play a significant role, especially in anaerobic Fe(II) oxidation, contributing to Fe(III) mineral formation in oxygen-depleted environments.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
Late-onset Alzheimer's disease (LOAD) is a chronic, multifactorial, and progressive neurodegenerative disease that associates with aging and is highly prevalent in our older population (≥65 years of age). This hypothesis generating this narrative review will examine the important role for the use of sodium thiosulfate (STS) as a possible multi-targeting treatment option for LOAD. Sulfur is widely available in our environment and is responsible for forming organosulfur compounds that are known to be associated with a wide range of biological activities in the brain.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Postgraduate Research Institute of Science, Technology, Environment and Medicine, Limassol CY-3021, Cyprus.
Some specific anthraquinone derivatives (AQs) are known to be used widely as effective chemotherapeutic agents in the treatment of cancer. However, their fundamental shortcoming is the high rate of cardiotoxicity observed in treated patients, which is thought to be caused by the increase in production of reactive oxygen species (ROS) catalyzed by iron and copper. The development of improved AQs and other anticancer drugs with enhanced efficacy but reduced toxicity remains a high priority.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!