In today's societies, climate-damaging and finite fossil resources such as oil and natural gas serve a dual purpose as energy source and as carbon source for chemicals and plastics. To respond to the finite availability and to meet international climate goals, a change to a renewable energy and raw material basis is inevitable and represents a highly complex task. In this review, we assess possible technology paths for Switzerland to reach these goals. First, we provide an overview of Switzerland's current energy demand and discuss possible renewable technologies as well as proposed scenarios to defossilize the current energy system. In here, electric vehicles and heat pumps are key technologies, whereas mainly photovoltaics replace nuclear power to deliver clean electricity. The production of chemicals also consumes fossil resources and for Switzerland, the oil demand for imported domestically used chemicals and plastics corresponds to around 20% of the current energetic oil demand. Thus, we additionally summarize technologies and visions for a sustainable chemical sector based on the renewable carbon sources biomass, CO₂ and recycled plastic. As biomass is the most versatile renewable energy and carbon source, although with a limited availability, aspects and proposed strategies for an optimal use are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2533/chimia.2021.788 | DOI Listing |
Nanomaterials (Basel)
December 2024
Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape, South Africa.
Energy generation and storage are critical challenges for developing economies due to rising populations and limited access to clean energy resources. Fossil fuels, commonly used for energy production, are costly and contribute to environmental pollution through greenhouse gas emissions. Quantum dot-sensitized solar cells (QDSSCs) offer a promising alternative due to their stability, low cost, and high-power conversion efficiency (PCE) compared to other third-generation solar cells.
View Article and Find Full Text PDFRSC Sustain
December 2024
School of Chemical Engineering, Faculty of Science, Engineering and Technology, The University of Adelaide Adelaide Australia
Environmental, social and governance (ESG) criteria demand that enterprises should not be assessed solely on their financial performance, but also on their environmental, social, and governance performance. This numerical assessment of ESG criteria enables them to be evaluated with the consideration of other financial issues of enterprises' performance and thereby guides financial investments into environmentally and socially responsible firms. ESG, however, solidifies the continuance of conventional technologies but can potentially disadvantage emerging technologies.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, Guangdong Province 510640, China.
Cellulose biocomposites have emerged as attractive alternatives to fossil-based plastics because of their excellent renewability and biodegradability; however, their water resistance and mechanical properties remain challenging. Herein, a cellulose- containing bioplastic with high a reinforcement content, water stability, and toughness is reported. Lignin-containing cellulose nanofibers (LCNF) were prepared by pretreating eucalyptus wood powder with a deep eutectic solvent and high-pressure homogenization.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, Hainan, China.
The world's energy landscape is undergoing a significant transformation, driven by the urgent need to address the climate issues and growing sustainable energy demand. Hydrogen can be produced from renewable sources and may play a crucial role in the zero-carbon economy, which is regarded as a promising alternative to fossil fuels. Currently, hydrogen production water electrolysis still relies on high-purity water, while seawater electrolysis benefits from the abundance of seawater, which can be particularly beneficial for water-scarce countries, and deep-sea applications, such as floating platforms or islands.
View Article and Find Full Text PDFACS Omega
December 2024
Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, 75132-903 Anápolis, GO, Brasil.
Biodiesel offers an alternative to fossil fuels, primarily because it is derived from renewable sources, with the potential to mitigate issues such as pollutant and greenhouse gas emissions, resource scarcity, and the market instability of petroleum derivatives. However, lower durability and stability pose challenges. To address this, researchers worldwide are exploring technologies that employ specific molecules to slow down biodiesel's oxidation process, thereby preserving its key physicochemical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!