Presence of a cryptic Onchocerca species in black flies of northern California, USA.

Parasit Vectors

Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.

Published: September 2021

AI Article Synopsis

Article Abstract

Background: Black flies (Diptera: Simuliidae) serve as arthropod vectors for various species of Onchocerca (Nematoda: Onchocercidae) that may be associated with disease in humans, domestic animals, and wildlife. The emergence of zoonotic Onchocerca lupi in North America and reports of cervid-associated zoonotic onchocerciasis by Onchocerca jakutensis highlight the need for increased entomological surveillance. In addition, there is mounting evidence that Onchocerca diversity in North America is far greater than previously thought, currently regarded as Onchocerca cervipedis species complex. This study reports new geographic records and black fly vector associations of an uncharacterized Onchocerca species.

Methods: To better understand the biodiversity and geographic distribution of Onchocerca, 485 female black flies (2015: 150, 2016: 335) were collected using CO-baited traps from February to October 2015-2016 in Lake County, northern California, USA. Individual flies were morphologically identified and pooled (≤ 10 individuals) by species, collection date, and trap location. Black fly pools were processed for DNA extraction, and subsequent PCR and sequencing targeting of the NADH dehydrogenase subunit 5 gene of filarioids.

Results: Among the pools of black flies, there were 158 individuals of Simulium tescorum (2015: 57, 2016: 101), 302 individuals of Simulium vittatum (sensu lato [s.l.]) (2015: 82, 2016: 220), 16 individuals of Simulium clarum "black" phenotype (2015: 5, 2016: 11), and 13 individuals of S. clarum "orange" phenotype (2015: 6, 2016: 7). PCR analysis revealed the percentage of filarioid-positive pools were 7.50% (n = 3) for S. tescorum, 3.75% (n = 3) for S. vittatum (s.l., likely S. tribulatum), 7.69% (n = 1) for S. clarum "black" phenotype, and no positives for S. clarum "orange" phenotype. Genetic distance and phylogenetic analyses suggest that the northern California Onchocerca isolates belong to the same species reported in black flies from southern California (average pairwise comparison: 0.32%), and seem closely related to Onchocerca isolates of white-tailed deer from upstate New York (average pairwise comparison: 2.31%).

Conclusion: A cryptic Onchocerca species was found in Lake County, California, and may be a part of a larger, continentally distributed species complex rather than a single described species of North America. In addition, there are at least three putative vectors of black flies (S. clarum, S. tescorum, S. vittatum) associated with this cryptic Onchocerca species. A comprehensive reassessment of North American Onchocerca biodiversity, host, and geographic range is necessary.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444403PMC
http://dx.doi.org/10.1186/s13071-021-04990-1DOI Listing

Publication Analysis

Top Keywords

black flies
24
2015 2016
16
onchocerca
13
cryptic onchocerca
12
onchocerca species
12
northern california
12
north america
12
individuals simulium
12
species
9
black
8

Similar Publications

Avian haemosporidian parasites affecting non-descript village chickens in Africa.

Trop Anim Health Prod

January 2025

Department of Agriculture and Animal Health, College of Agriculture and Environmental Science, University of South Africa, Florida, South Africa.

Smallholder farmers in most of the rural areas in African countries rear non-descript village chickens for petty cash, food provision and for performing rituals. Village chicken production systems are regarded as low input- low output because the chickens receive minimum care and produce average to less eggs and meat. The chickens receive minimal biosecurity and are often left to scavenge for feed and thus exposes them to potential vector parasites that can transmit parasites such as haemoparasites.

View Article and Find Full Text PDF

Land use and cover changes lead to fragmentation of the natural habitats of sand flies and modify the epidemiological profile of leishmaniasis. This process contributes to the infestation of adjacent rural settlements by vector sand fly species with different degrees of adaptation, promoting leishmaniasis outbreaks. This study aimed to assess land use and cover changes over a 12-year period and investigate the diversity and abundance of sand fly assemblages in the rural area of Codó, Maranhão State, Brazil.

View Article and Find Full Text PDF

The remarkable diversity of insect pigmentation offers a captivating avenue for studying evolution and genetics. In tephritids, understanding the molecular basis of mutant traits is also crucial for applied entomology, enabling the creation of genetic sexing strains through genome editing, thus facilitating sex-sorting before sterile insect releases. Here, we present evidence from classical and modern genetics showing that the black pupae (bp) phenotype in the GUA10 strain of Anastrepha ludens is caused by a large deletion at the ebony locus, removing the gene's entire coding region.

View Article and Find Full Text PDF

The black soldier fly (Hermetia illucens) is a saprophagous insect known for bioconverting organic waste, potentially offering environmental benefits, such as contributing to waste reduction and nutrient cycling. The performance of larvae varies significantly with factors substrate moisture, larval density, and scale of production. Three experiments were conducted using a mix of spent mushroom substrate (SMS) and chicken feed (CF).

View Article and Find Full Text PDF

This study focuses on the effects of different levels of sodium selenite on the growth, selenium content, and antioxidant capacity of black soldier fly (Hermetia illucens). The experiment used different doses of sodium selenite for treatment, including a basic diet with no supplements (control) and diets supplemented with 10 mg/kg (Se10), 20 mg/kg (Se20), 30 mg/kg (Se30), and 40 mg/kg (Se40) sodium selenite, and results show that sodium selenite supplementation significantly increases selenium content and improves selenium utilization and antioxidant capacity (P < 0.05).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!