Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we present a fast and adaptive correlation guided enhanced sampling method (CORE-MD II). The CORE-MD II technique relies, in part, on partitioning of the entire pathway into short trajectories that we refer to as instances. The sampling within each instance is accelerated by adaptive path-dependent metadynamics simulations. The second part of this approach involves kinetic Monte Carlo (kMC) sampling between the different states that have been accessed during each instance. Through the combination of the partition of the total simulation into short non-equilibrium simulations and the kMC sampling, the CORE-MD II method is capable of sampling protein folding without any a priori definitions of reaction pathways and additional parameters. In the validation simulations, we applied the CORE-MD II on the dialanine peptide and the folding of two peptides: TrpCage and TrpZip2. In a comparison with long time equilibrium Molecular Dynamics (MD), 1 µs replica exchange MD (REMD), and CORE-MD I simulations, we find that the level of convergence of the CORE-MD II method is improved by a factor of 8.8, while the CORE-MD II method reaches acceleration factors of ∼120. In the CORE-MD II simulation of TrpZip2, we observe the formation of the native state in contrast to the REMD and the CORE-MD I simulations. The method is broadly applicable for MD simulations and is not restricted to simulations of protein folding or even biomolecules but also applicable to simulations of protein aggregation, protein signaling, or even materials science simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0063664 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!