Characterizing the relationship between vegetation phenology and urbanization indicators is essential to understand the impacts of human activities on urban ecosystems. In this study, we explored the response of vegetation phenology to urbanization in Beijing (China) during 2001-2018, using impervious surface area (ISA) and the information of urban-rural gradients (i.e., concentric rings from the urban core to surrounding rural areas) as the urbanization indicators. We found the change rates of vegetation phenology in urban areas are 1.3 and 1.1 days per year for start of season (SOS) and end of season (EOS), respectively, about three times faster than that in forest. Moreover, we found a divergent response of SOS with the increase of ISA, which differs from previous results with advanced SOS in the urban environment than surrounding rural areas. This might be attributed to the mixed land cover types and the thermal environment caused by the urban heat island in the urban environment. Similarly, a divergent pattern of phenological indicators along the urban-rural gradient shows a non-linear response of vegetation phenology to urbanization. These findings provide new insights into the complicated interactions between vegetation phenology and urban environments. High-resolution weather data are required to support process-based vegetation phenology models in the future, particularly under different global urbanization and climate change scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.150079DOI Listing

Publication Analysis

Top Keywords

vegetation phenology
28
phenology urbanization
16
response vegetation
12
divergent response
8
urbanization indicators
8
surrounding rural
8
rural areas
8
phenology urban
8
urban environment
8
vegetation
7

Similar Publications

Vegetation Types Shift Physiological and Phenological Controls on Carbon Sink Strength in a Coastal Zone.

Glob Chang Biol

January 2025

Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China.

The carbon sink function performed by the different vegetation types along the environmental gradient in coastal zones plays a vital role in mitigating climate change. However, inadequate understanding of its spatiotemporal variations across different vegetation types and associated regulatory mechanisms hampers determining its potential shifts in a changing climate. Here, we present long-term (2011-2022) eddy covariance measurements of the net ecosystem exchange (NEE) of CO at three sites with different vegetation types (tidal wetland, nontidal wetland, and cropland) in a coastal zone to examine the role of vegetation type on annual carbon sink strength.

View Article and Find Full Text PDF

Spatial Analysis and Socio-Environmental Determinants of Canine Visceral Leishmaniasis in an Urban Area in Northeastern Brazil.

Trop Med Infect Dis

December 2024

Laboratório de Mamíferos, Programa de Pós-Graduação em Ciências Biológicas, Departamento de Sistemática e Ecologia, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa 58051-900, PB, Brazil.

The urbanization process has led to significant changes in the landscape, shifting the epidemiological profile of the visceral leishmaniasis (VL) in Brazil. Dogs are considered the main urban reservoir of VL, whose infections precede cases in humans. In order to understand the socio-environmental determinants associated with canine visceral leishmaniasis (CVL), we conducted a spatial analysis of CVL cases in northeastern Brazil from 2013 to 2015, georeferencing 3288 domiciled dogs.

View Article and Find Full Text PDF

Multiple drivers of spring migration timing for red deer over the past 16 years in northern Europe.

Proc Biol Sci

January 2025

Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway.

The timing of migration is fundamental for species exploiting seasonally variable environments. For ungulates, earlier spring migration is expected with earlier vegetation green-up. However, other drivers, such as access to agricultural farmland and variation in local conditions, are also known to affect migration.

View Article and Find Full Text PDF

Global warming has significantly altered plant phenology by advancing the timing of leaf emergence, impacting vegetation productivity and adaptability. Winter and spring temperatures have commonly been used to explain spring phenology shifts, but we still lack a solid understanding of the effects of interactions between conditions in different seasons. This study utilizes normalized difference vegetation index (NDVI) and meteorological data to examine the effects of changes in winter and spring temperatures and precipitation on the start of the vegetation growing season (SOS) at high latitudes in China from 1982 to 2015.

View Article and Find Full Text PDF

Diet selection and composition of sheep target grazing plains larkspur ( Greene) in northern mixed-grass prairie were evaluated during a drought year (2022). Thirteen Rambouillet ewes (3-to 6-year-old, body weight (BW) 76 kg ± 2.9), 14 Dorper ewes (3-to 6-year-old, BW 47 kg ± 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!