Global demand for phosphorus (P) is increasing, which has led to concerns over future drought and has driven efforts to recover P from wastewater streams for reuse. In this study, platinum-coated titanium electrodes were applied to the electrochemical precipitation of P from anaerobic digestion effluent that was collected from a domestic wastewater treatment plant. The influence of the electrode distance on P removal and precipitation was investigated. In addition, the influence of the electrolysis time on the chemical structure and composition of the P precipitate was evaluated from the viewpoint of utilising the P precipitate as fertiliser. Regardless of the electrode distance (10, 5 and 1 mm), PO, Ca and Mg were removed. The bulk solution pH increased during electrolysis because of the consumption of generated H as HCO transitioned to HCO near the anode. A greater increase in the bulk solution pH was observed when the electrode distance was narrowed because of the enhanced H consumption. Narrowing the electrode distance reduced the energy consumption for P precipitation. The increase in the bulk solution pH with the narrowing electrode distance changed the dominant P precipitation pathway from onto the cathode to in the bulk solution. X-ray diffraction spectra of the precipitates showed that increasing the electrolysis time transformed amorphous P to hydroxyapatite and struvite. Most P existed in a citric acid-soluble form, which is recommended for use as a slow P release fertiliser. There were no significant changes in the citric acid-soluble P content of the precipitates with increasing electrolysis time. Therefore, increasing the electrolysis time has little influence on the suitability of the precipitate as a slow P release fertiliser.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.150114DOI Listing

Publication Analysis

Top Keywords

electrode distance
24
electrolysis time
20
bulk solution
16
increasing electrolysis
12
anaerobic digestion
8
digestion effluent
8
increase bulk
8
narrowing electrode
8
precipitates increasing
8
citric acid-soluble
8

Similar Publications

Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.

Tissue Eng Regen Med

January 2025

College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.

View Article and Find Full Text PDF

Purpose: Cochlear implants (CI) are the most successful bioprosthesis in medicine probably due to the tonotopic anatomy of the auditory pathway and of course the brain plasticity. Correct placement of the CI arrays, respecting the inner ear anatomy are therefore important. The ideal trajectory to insert a cochlear implant array is defined by an entrance through the round window membrane and continues as long as possible parallel to the basal turn of the cochlea.

View Article and Find Full Text PDF

Metal hexacyanoferrates (HCFs), also known as Prussian blue analogues, are ideal cathodes for potassium-ion batteries (PIBs) due to their nontoxicity and cost-effectiveness. Nevertheless, obtaining metal HCF cathode materials with both long-term cycling stability and high rate performance remains a daunting challenge. In this study, we present mesoporous single-crystalline iron hexacyanoferrate (MSC-FeHCF) microspheres, featuring a single-crystalline structure that contains interconnected pores spanning the entire crystal lattice.

View Article and Find Full Text PDF

Ultra-Fast Moisture Sensor for Respiratory Cycle Monitoring and Non-Contact Sensing Applications.

Adv Mater

January 2025

Henry Royce Institute and Photon Science Institute, Department of Electrical and Electronic Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.

As human-machine interface hardware advances, better sensors are required to detect signals from different stimuli. Among numerous technologies, humidity sensors are critical for applications across different sectors, including environmental monitoring, food production, agriculture, and healthcare. Current humidity sensors rely on materials that absorb moisture, which can take some time to equilibrate with the surrounding environment, thus slowing their temporal response and limiting their applications.

View Article and Find Full Text PDF

The Accuracy of Cardiac Surface Conduction Velocity Measurements.

JACC Clin Electrophysiol

December 2024

The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.

Background: Conduction velocity (CV) is a measure of the health of myocardial tissue. It can be measured by taking differences in local activation times from intracardiac electrodes. Several factors introduce error into the measurement, among which ignoring the 3-dimensional aspect is a major detriment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!