An important transition from a homogeneous steady state to an inhomogeneous steady state via the Turing bifurcation in coupled oscillators was reported recently [Phys. Rev. Lett. 111, 024103 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.024103]. However, the same in the quantum domain is yet to be observed. In this paper, we discover the quantum analog of the Turing bifurcation in coupled quantum oscillators. We show that a homogeneous steady state is transformed into an inhomogeneous steady state through this bifurcation in coupled quantum van der Pol oscillators. We demonstrate our results by a direct simulation of the quantum master equation in the Lindblad form. We further support our observations through an analytical treatment of the noisy classical model. Our study explores the paradigmatic Turing bifurcation at the quantum-classical interface and opens up the door toward its broader understanding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.104.024214 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!