The interplanetary plasma is characterized by a high level of complexity over a broad range of spatial scales. Spacecraft have detected a large variety of embedded structures that have been identified as discontinuities in the magnetic field vector. They can be either generated within the solar corona and advected by the plasma flow or locally generated as a result of the turbulent cascade of the solar wind turbulence. Since magnetic field fluctuations and structures influence the energetic particle propagation, here we set up a numerical model to study the interaction between charged particles and an ideal magnetohydrodynamics rotational discontinuity. This interaction is strongly influenced by the model parameters, such as the rotation angle of the discontinuity, the orientation of the mean-field direction with respect to the normal to the discontinuity direction, the initial particle pitch angle, and the initial particle gyrophase. Numerical results clearly show that the motion of particles crossing the discontinuity is extremely complex and highly sensitive to the initial conditions of the system, with transitions to a chaotic behavior. We find that particles can be temporarily trapped in rotational discontinuity and that the trapping times have a nearly power-law distribution. Also, the separatrix in the initial conditions phase space between crossing and noncrossing trajectories has a fractal structure. Implications for energetic particle propagation in space plasmas are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.104.025208 | DOI Listing |
J Food Sci
January 2025
Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA.
Freezing extends the shelf life of foods but often leads to structural damage due to ice crystal formation, negatively impacting quality attributes. Oscillating magnetic field (OMF)-assisted supercooling has emerged as a potential technique to overcome these limitations by inhibiting ice nucleation and maintaining foods in a supercooled state. Despite its potential, the effectiveness and underlying mechanisms of OMF-assisted supercooling remain subjects of debate.
View Article and Find Full Text PDFClin Neuroradiol
January 2025
Department of Radiology and Neuroradiology, University Hospital of Schleswig-Holstein, Arnold-Heller-Str. 3, Hs D (Neurozentrum), 24105, Kiel, Germany.
Purpose: Magnetic Resonance Imaging based brain segmentation and volumetry has become an important tool in clinical routine and research. However the impact of the used hardware is only barely investigated. This study aims to assess the influence of scanner manufacturer, field strength and head-coil on volumetry results.
View Article and Find Full Text PDFNeuroradiology
January 2025
Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
Background And Purpose: The cortical high-flow sign has been more commonly reported in oligodendroglioma, IDH-mutant and 1p/19q-codeleted (ODG IDHm-codel) compared to diffuse glioma with IDH-wildtype or astrocytoma, IDH-mutant. Besides tumor types, higher grades of glioma might also contribute to the cortical high flow. Therefore, we investigated whether the histological cortical vascular density or CNS WHO grade was associated with the cortical high-flow sign in patients with ODG IDHm-codel.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China.
Realizing spin-orbit torque (SOT)-driven magnetization switching offers promising opportunities for the advancement of next-generation spintronics. However, the relatively low charge-spin conversion efficiency accompanied by an ultrahigh critical switching current density () remains a significant obstacle to the further development of SOT-based storage elements. Herein, spin absorption engineering at the ferromagnet/nonmagnet interface is firstly proposed to achieve high SOT efficiency in Pt/Co/Ir trilayers.
View Article and Find Full Text PDFAnalyst
January 2025
Institutes of Biomedical Sciences & Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai 200433, China.
Reducing the time required for the detection of bacteria in blood samples is a critical area of investigation in the field of clinical diagnosis. Positive blood culture samples often require a plate culture stage due to the interference of blood cells and proteins, which can result in significant delays before the isolation of single colonies suitable for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. In this study, we developed a non-specific enrichment strategy based on SiO-encapsulated FeO nanoparticles combined with MALDI-TOF MS for direct identification of bacteria from aqueous environments or positive blood culture samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!