A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fractional nonlinear electrical lattice. | LitMetric

Fractional nonlinear electrical lattice.

Phys Rev E

Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.

Published: August 2021

We examine the linear and nonlinear modes of a one-dimensional nonlinear electrical lattice, where the usual discrete Laplacian is replaced by a fractional discrete Laplacian. This induces a long-range intersite coupling that, at long distances, decreases as a power law. In the linear regime, we compute both the spectrum of plane waves and the mean-square displacement (MSD) of an initially localized excitation, in closed form in terms of regularized hypergeometric functions and the fractional exponent. The MSD shows ballistic behavior at long times, MSD∼t^{2} for all fractional exponents. When the fractional exponent is decreased from its standard integer value, the bandwidth decreases and the density of states shows a tendency towards degeneracy. In the limit of a vanishing exponent, the system becomes completely degenerate. For the nonlinear regime, we compute numerically the low-lying nonlinear modes, as a function of the fractional exponent. A modulational stability computation shows that, as the fractional exponent decreases, the number of electrical discrete solitons generated also decreases, eventually collapsing into a single soliton.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.104.024219DOI Listing

Publication Analysis

Top Keywords

fractional exponent
16
nonlinear electrical
8
electrical lattice
8
nonlinear modes
8
discrete laplacian
8
regime compute
8
fractional
7
exponent
5
fractional nonlinear
4
lattice examine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!