Structures and hydrogen bonding of 1,7-dioxaspiro[5.5]undecane and its hydrates.

Phys Chem Chem Phys

School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.

Published: September 2021

The conformations of 1,7DSU and its stepwise solvation by up to 5 water molecules were explored using supersonic-jet Fourier transform microwave spectroscopy with the supplement of theoretical calculations. Experimentally, the rotational spectra of the most stable structures of the monomer, monohydrate and dihydrate were observed and assigned. The characteristics of the stability and intermolecular interaction topologies of the 1,7DSU monomer and its hydrated clusters were obtained by CREST conformational sampling followed by B3LYP-D3(BJ)/def2-TZVP geometrical optimizations and MP2/aug-cc-pVTZ single-point energy calculations. The first water molecule links to the 1,7DSU monomer through an OH⋯O hydrogen bond. The water molecules tend to aggregate with each other and form cyclic structures for the = 2-5 clusters. The interactions between water and the 1,7DSU monomer as well as those between water and water were revealed. The analyses of non-covalent interactions and the natural bond orbital suggest that the OH⋯O, OH⋯O, and CH⋯O hydrogen bonds play a prominent role in structural stability.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp02964aDOI Listing

Publication Analysis

Top Keywords

17dsu monomer
12
water molecules
8
water
6
structures hydrogen
4
hydrogen bonding
4
bonding 17-dioxaspiro[55]undecane
4
17-dioxaspiro[55]undecane hydrates
4
hydrates conformations
4
17dsu
4
conformations 17dsu
4

Similar Publications

Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.

View Article and Find Full Text PDF

Thiol-Ene Click Chemistry: A General Strategy for Tuning the Properties of Vinylene-Linked Covalent Organic Frameworks.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China.

Vinylene-linked Covalent Organic Frameworks (V-2D-COFs) are a class of promising porous organic materials that feature fully π-conjugated structures, high crystallinity, ultrahigh chemical stability, and extraordinary optoelectronic properties. However, the types of reactions and the availability of monomers for synthesizing linked COFs are considerably limited by the irreversibility of the C═C bond, and the complete π-conjugated structure restricts their in-depth research in hydrophilicity, membrane materials, and proton conductivity. Postsynthetic modification (PSM), which can avoid these problems by incorporating functional moieties into the predetermined framework, provides an alternative way to construct diverse V-2D-COFs.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.

Background: Reversible post-translational modifications, phosphorylation and dephosphorylation, on tau protein play a critical role in the microtubule (MT) modulation. However, abnormal tau phosphorylation, which occurs in tauopathies such as Alzheimer's disease (AD), causes the dissociation of tau from MTs. The dissociated tau then aggregates into sequent forms from soluble oligomers to paired helical filaments (PHF), and insoluble neurofibrillary tangles (NFTs), a hallmark of AD.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Cleveland Clinic, Cleveland, OH, USA.

Background: Apolipoprotein E (ApoE) is the primary cholesterol and lipid transporting apolipoprotein in the central nervous system (CNS) and is the greatest genetic risk factor for Alzheimer's Disease (AD). There are three main isoforms differing by single amino acid changes: ε3 is "neutral", ε4 is "risk" (Cys112Arg), and ε2 is "resilience" (Arg158Cys). Rare forms (Christchurch, Jacksonville) have also been proposed as resilience alleles, while an ε4-like allele (with Arg61Thr) is present in non-human primates without AD risk.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is pathologically defined by the presence of extracellular Aβ plaque and intracellular tau inclusions. Emerging evidence shows that tau aggregates contain pathogenic bioactivities of templating monomeric tau into filamentous fibrils and propagating through cells. Based on these findings, assays have been developed to detect minute amounts of pathogenic tau in human samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!