Demands on nontoxic nanomaterials in the short-wavelength infrared (SWIR) have rapidly grown over the past decade. Here, we present the nonstoichiometric silver chalcogenide nanocrystals of AgTe ( > 2) and AgTe/AgS CQDs with a tunable bandgap across the SWIR region. When the atomic percent of the metal and chalcogenide elements are varied, the emission frequency of the excitonic peak is successfully extended to 2.7 μm. Surprisingly, the AgTe CQD film responds to the SWIR light with a responsivity of 2.1 A/W at 78 K. Also, the AgS shell growth over the AgTe core enhances not only the emission intensity but also the structural rigidity, preventing crystal morphology deformation under the electron beam. The origin of the enhancement in the emission intensity and air stability of AgTe and AgTe/AgS CQDs is carefully investigated by X-ray photoelectron spectroscopy (XPS). The optical properties and infrared photocurrent of AgTe CQDs will provide new opportunities for solution-based SWIR applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.1c02407DOI Listing

Publication Analysis

Top Keywords

short-wavelength infrared
8
nonstoichiometric silver
8
agte agte/ags
8
agte/ags cqds
8
emission intensity
8
agte
5
extended short-wavelength
4
infrared photoluminescence
4
photoluminescence photocurrent
4
photocurrent nonstoichiometric
4

Similar Publications

Background-free luminescent and chromatic assay for strong visual detection of creatinine.

Talanta

January 2025

Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China. Electronic address:

Creatinine is an essential biomarker for the clinical diagnosis and treatment of renal insufficiency. Although fluorescent methods are powerful tools for creatinine detection, almost all reported fluorescent probes rely on short-wavelength excitation and a single fluorescent signal, making them susceptible to environmental and operational conditions. In this study, a near-infrared excited, highly sensitive, and multi-output signal sensing system was established using upconversion nanoparticles and 3,5-dinitrobenzoic acid (DNBA) for synergistic luminescent and colorimetric assay for strong visual detection of creatinine.

View Article and Find Full Text PDF

Finely Tailored Conjugated Small Molecular Nanoparticles for Near-Infrared Biomedical Applications.

Research (Wash D C)

January 2025

Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.

Near-infrared (NIR) phototheranostics (PTs) show higher tissue penetration depth, signal-to-noise ratio, and better biosafety than PTs in the ultraviolet and visible regions. However, their further advancement is severely hindered by poor performances and short-wavelength absorptions/emissions of PT agents. Among reported PT agents, conjugated small molecular nanoparticles (CSMNs) prepared from D-A-typed photoactive conjugated small molecules (CSMs) have greatly mediated this deadlock by their high photostability, distinct chemical structure, tunable absorption, intrinsic multifunctionality, and favorable biocompatibility, which endows CSMNs with more possibilities in biological applications.

View Article and Find Full Text PDF

Short-wave infrared (SWIR) imaging has a wide range of applications in civil and military fields. Over the past two decades, significant efforts have been devoted to developing high-resolution, high-sensitivity, and cost-effective SWIR sensors covering the spectral range from 0.9 μm to 3 μm.

View Article and Find Full Text PDF

Supercontinuum generation in scintillator crystals.

Sci Rep

January 2025

Laser Research Center, Vilnius University, Saulėtekio Avenue 10, LT-10223, Vilnius, Lithuania.

We present a comparative experimental study of supercontinuum generation in undoped scintillator crystals: bismuth germanate (BGO), yttrium orthosilicate (YSO), lutetium oxyorthosilicate (LSO), lutetium yttrium oxyorthosilicate (LYSO) and gadolinium gallium garnet (GGG), pumped by 180 fs fundamental harmonic pulses of an amplified Yb:KGW laser. In addition to these materials, experiments in yttrium aluminium garnet (YAG), potassium gadolinium tungstate (KGW) and lithium tantalate (LT) were performed under identical experimental settings (focusing geometry and sample thickness), which served for straightforward comparison of supercontinuum generation performances. The threshold and optimal (that produces optimized red-shifted spectral extent) pump pulse energies for supercontinuum generation were evaluated from detailed measurements of spectral broadening dynamics.

View Article and Find Full Text PDF

Bifunctional Design of Ferroelectric-Order and Band-Engineering in Cu:KTN Crystal for Extended Self-Powered Photoelectric Response.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China.

Photoelectric conversion in ferroelectric crystals can support many important applications in modern on-chip technology, but suffering from two problems, low responsive current and narrow responsive range. Especially, wide-gap ferroelectric oxides are only active at short-wavelength ultraviolet region with weak photocurrent at nanoampere levels. Here, a bifunctional design strategy of ferroelectric-order and electronic-band to improve the photocurrent and extend the responsive range simultaneously, is proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!