Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Magnetic hydrogels have found a myriad of applications in bioengineering and soft robotics. As the function of magnetic hydrogels is affected by the distribution of magnetic nanoparticles, it is imperative to propose a strategy for fabricating patterned magnetic hydrogels. However, previous strategies can only achieve very simple distribution by using external magnetic fields to guide the chain-like assembly of nanoparticles. It remains challenging to realize the complex distribution of magnetic nanoparticles in a hydrogel. Here we propose an ion transfer printing strategy to prepare patterned magnetic hydrogels, taking advantage of the ion permeation and nanoparticle precipitation in the hydrogel. The polyacrylamide (PAAm) hydrogel is loaded with Fe/Fe ions and covered with a patterned filter paper with OH ions to generate FeO nanoparticles locally. The effect of the ion concentration and covering time on the generation of nanoparticles is investigated by using a reaction-diffusion model. Furthermore, the magnetothermal response of the patterned magnetic hydrogels has been characterized to reveal the distribution and thermogenesis of magnetic nanoparticles. We hope that the fabricated magnetic hydrogels with complex patterns can open up new opportunities for applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1sm00869b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!