A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication of patterned magnetic hydrogels by ion transfer printing. | LitMetric

Fabrication of patterned magnetic hydrogels by ion transfer printing.

Soft Matter

State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China.

Published: September 2021

Magnetic hydrogels have found a myriad of applications in bioengineering and soft robotics. As the function of magnetic hydrogels is affected by the distribution of magnetic nanoparticles, it is imperative to propose a strategy for fabricating patterned magnetic hydrogels. However, previous strategies can only achieve very simple distribution by using external magnetic fields to guide the chain-like assembly of nanoparticles. It remains challenging to realize the complex distribution of magnetic nanoparticles in a hydrogel. Here we propose an ion transfer printing strategy to prepare patterned magnetic hydrogels, taking advantage of the ion permeation and nanoparticle precipitation in the hydrogel. The polyacrylamide (PAAm) hydrogel is loaded with Fe/Fe ions and covered with a patterned filter paper with OH ions to generate FeO nanoparticles locally. The effect of the ion concentration and covering time on the generation of nanoparticles is investigated by using a reaction-diffusion model. Furthermore, the magnetothermal response of the patterned magnetic hydrogels has been characterized to reveal the distribution and thermogenesis of magnetic nanoparticles. We hope that the fabricated magnetic hydrogels with complex patterns can open up new opportunities for applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1sm00869bDOI Listing

Publication Analysis

Top Keywords

magnetic hydrogels
28
patterned magnetic
16
magnetic nanoparticles
12
magnetic
11
ion transfer
8
transfer printing
8
distribution magnetic
8
hydrogels
7
nanoparticles
6
fabrication patterned
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!