Chemical wave patterns that develop in the O + H reaction on a bimetallic Rh(110)/Ni surface have been studied with photoelectron emission microscopy (PEEM) in the 10 to 10 mbar range. The bifurcation diagram for Ni coverages up to 3 monolayers (ML) was mapped out for = 770 K. Stationary concentration patterns of macroscopic stripes as well as target patterns and irregular chemical waves were observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp02389f | DOI Listing |
Mater Horiz
January 2025
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang province, 315201, China.
Stretchable electromagnetic interference (EMI) shields with strain-insensitive EMI shielding and Joule heating performances are highly desirable to be integrated with wearable electronics. To explore the possibility of applying geometric design in elastomeric liquid metal (LM) composites and fully investigate the influence of LM geometry on stretchable EMI shielding and Joule heating, multifunctional wrinkle-structured LM/Ecoflex sandwich films with excellent stretchability are developed. The denser LM wrinkle enables not only better electrical conduction, higher shielding effectiveness (SE) and steady-state temperature, but also enhanced strain-stable far-field/near-field shielding performance and Joule-heating capability.
View Article and Find Full Text PDFBiochemistry
January 2025
School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States.
Coral reefs are hotspots of marine biodiversity, which results in the synthesis of a wide variety of compounds with unique molecular scaffolds, and bioactivities, rendering reefs an ecosystem of interest. The chemodiversity stems from the intricate relationships between inhabitants of the reef, as the chemistry produced partakes in intra- and interspecies communication, settlement, nutrient acquisition, and defense. However, the coral reefs are declining at an unprecedented rate due to climate change, pollution, and increased incidence of pathogenic diseases.
View Article and Find Full Text PDFACS Nano
January 2025
Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.
The synthesis of covalent organic frameworks (COFs) with excellent luminescent properties and their effective application in the field of bionic sensing remain a formidable challenge. Herein, a series of COFs with different numbers of hydroxyl groups are successfully synthesized, and the number of hydroxyl groups on the benzene-1,3,5-tricarbaldehyde (BTA) linker influences the properties of the final COFs. The COF (HHBTA-OH) prepared with hydrazine hydrate (HH) and BTA containing one hydroxyl group as the ligands exhibits the best fluorescent performance.
View Article and Find Full Text PDFUltrason Sonochem
January 2025
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China; Light Alloy Research Institute, Central South University, Changsha 410083, China.
The chemical corrosion of the TC4 radiation rod surface (TRRS) during the ultrasonic casting process has the potential to significantly impair the smooth conduction of ultrasonic waves. However, in the later stages of corrosion, a self-protected structure (TSPS) emerges under the ultrasonic cavitation effect, which serves to impede the chemical corrosion of the TRRS and markedly reduce the rate of mass loss of the radiation rod. This ensures the smooth ultrasonic conduction of the radiation rod during operation.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanics of Materials and Constructions (MeMC), Vrije Universiteit Brussel, B-1050 Brussels, Belgium.
There is very limited research in the literature investigating the way acoustic emission signals change when polymer materials are undergoing different fracture modes. This study investigates the capability of acoustic emission to recognize the fracture mode through acoustic emission parameter analysis, and can be considered the first-ever study which examines the impact of different loading conditions, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!