Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, isolated surface sites of vanadium oxide on the alumina surface were modeled and compared to experimental data obtained with V Solid-State Nuclear Magnetic Resonance (SSNMR) spectroscopy. The geometry of the centers on the (100), (110), and (111) planes of the spinel structure and (010) monoclinic alumina was modeled using density functional theory (DFT); their V NMR parameters were calculated using the Gauge-Including Projector Augmented Wave (GIPAW) method. The comparison of the simulated theoretical spectra with the experimental ones made it possible to find the sites that are likely present on the surface of real catalysts. The minimum energy pathways of propane oxidative dehydrogenation to propene were calculated for the dioxovanadium site in order to estimate its activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp03297f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!