Background: Quantitative physical examination (PE) indicators, including palpable pulsatility length and outflow scores, can be used to quantify stenosis severity at hemodialysis vascular access sites. It is known that the risk of high-shear-related thrombosis is increased when the minimal luminal diameter (MLD) of stenosis decreases. At present, MLD is measured using sonography or angiography. This study sought to determine the relationship between quantitative PE indicators and MLD and report their diagnostic performance in detecting patients with stenosis at a high risk of thrombosis.
Methods: We performed a retrospective case-control study using routinely collected data. We used the post-stenosis palpable pulsatility length (sPPL) and pulse-and-thrill based outflow score to assess the severity of AVF inflow and outflow stenosis, respectively. We recorded paired quantitative PE indicators and MLD before and after angioplasty in patients enrolled over a 4-month period.
Results: A total of 249 paired PE indicators and MLD measurements were obtained from 163 patients. A receiver operating characteristic curve analysis showed that an MLD cutoff value of <1.55 mm and an MLD of <1.95 mm discriminated sPPL = 0 and PESOS (physical examination significant outflow stenosis)/1- of the outflow score, respectively, from all other measurements, with the area under the curve values of 0.8922 and 0.9618, respectively. With sPPL = 0 and PESOS/1- of the outflow score as diagnostic tools to detect inflow stenosis with an MLD of ⩽1.5 mm and outflow stenosis with an MLD of ⩽1.9 mm at vascular access sites, sensitivity = 86.00% and 88.46%; specificity = 97.67% and 92.11%; positive predictive values of 97.73% and 92.00% and negative predictive values of 85.71% and 88.61%, respectively, were observed.
Conclusions: Our preliminary results showed that physical examination can potentially be a diagnostic tool in detecting patients with stenosis who are at a high risk of thrombosis at hemodialysis vascular access sites with high diagnostic accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/11297298211045505 | DOI Listing |
Lymphology
January 2025
Vascular Medicine Unit, Cholet Hospital, Cholet, France.
Access to trained lymphedema care providers remains limited making patient-driven management solutions essential. One such option, sequential intermittent pneumatic compression (IPC), has gained traction as a supportive tool for lymphedema management. While newer IPC devices and innovative applications are being introduced to the market, questions regarding the safety and efficacy of this technology persist.
View Article and Find Full Text PDFBr J Radiol
January 2025
Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Yanta Western Road, Xi'an, Shannxi, 710061.
Purpose: To explore the effect of different reconstruction algorithms (ASIR-V and DLIR) on image quality and emphysema quantification in chronic obstructive pulmonary disease (COPD) patients under ultra-low-dose scanning conditions.
Materials And Methods: This prospective study with patient consent included 62 COPD patients. Patients were examined by pulmonary function test (PFT), standard-dose CT (SDCT) and ultra-low-dose CT (ULDCT).
Eur J Neurosci
January 2025
National Institute of Education, Nanyang Technological University, Singapore.
Control Eng Pract
January 2025
Control Systems Engineering Laboratory, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85287 USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!