Accurate nutrient sensing is important for rapid fungal growth and exploitation of available resources. Sulfur is an important nutrient source found in a number of biological macromolecules, including proteins and lipids. The model filamentous fungus Neurospora crassa is capable of utilizing sulfur found in a variety of sources from amino acids to sulfate. During sulfur starvation, the transcription factor CYS-3 is responsible for upregulation of genes involved in sulfur uptake and assimilation. Using a combination of RNA sequencing and DNA affinity purification sequencing, we performed a global survey of the N. crassa sulfur starvation response and the role of CYS-3 in regulating sulfur-responsive genes. The CYS-3 transcription factor bound the promoters and regulated genes involved in sulfur metabolism. Additionally, CYS-3 directly activated the expression of a number of uncharacterized transporter genes, suggesting that regulation of sulfur import is an important aspect of regulation by CYS-3. CYS-3 also directly regulated the expression of genes involved in mitochondrial electron transfer. During sulfur starvation, genes involved in nitrogen metabolism, such as amino acid and nucleic acid metabolic pathways, along with genes encoding proteases and nucleases that are necessary for scavenging nitrogen, were activated. Sulfur starvation also caused changes in the expression of genes involved in carbohydrate metabolism, such as those encoding glycosyl hydrolases. Thus, our data suggest a connection between sulfur metabolism and other aspects of cellular metabolism. Identification of nutrients present in the environment is a challenge common to all organisms. Sulfur is an important nutrient source found in proteins, lipids, and electron carriers that are required for the survival of filamentous fungi such as Neurospora crassa. Here, we transcriptionally profiled the response of N. crassa to characterize the global response to sulfur starvation. We also used DNA affinity purification sequencing to identify the direct downstream targets of the transcription factor responsible for regulating genes involved in sulfur uptake and assimilation. Along with genes involved in sulfur metabolism, this transcription factor regulated a number of uncharacterized transporter genes and genes involved in mitochondrial electron transfer. Our data also suggest a connection between sulfur, nitrogen, and carbon metabolism, indicating that the regulation of a number of metabolic pathways is intertwined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550094PMC
http://dx.doi.org/10.1128/mSphere.00564-21DOI Listing

Publication Analysis

Top Keywords

genes involved
32
sulfur starvation
24
sulfur
16
transcription factor
16
involved sulfur
16
neurospora crassa
12
dna affinity
12
affinity purification
12
purification sequencing
12
genes
12

Similar Publications

Unraveling the genetic spectrum of inherited deaf-blindness in Portugal.

Orphanet J Rare Dis

January 2025

Ophthalmology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Hospitais da Universidade de Coimbra (HUC), ULS Coimbra, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal.

Background: Syndromic genetic disorders affecting vision can also cause hearing loss, and Usher syndrome is by far the most common etiology. However, many other conditions can present dual sensory impairment. Accurate diagnosis is essential for providing patients with genetic counseling, prognostic information, and appropriate resources.

View Article and Find Full Text PDF

Background: Human kinesin family member 11 (KIF11) plays a vital role in regulating the cell cycle and is implicated in the tumorigenesis and progression of various cancers, but its role in endometrial cancer (EC) is still unclear. Our current research explored the prognostic value, biological function and targeting strategy of KIF11 in EC through approaches including bioinformatics, machine learning and experimental studies.

Methods: The GSE17025 dataset from the GEO database was analyzed via the limma package to identify differentially expressed genes (DEGs) in EC.

View Article and Find Full Text PDF

Degenerated vision, altered lipid metabolism, and expanded chemoreceptor repertoires enable Lindaspio polybranchiata to thrive in deep-sea cold seeps.

BMC Biol

January 2025

CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.

Background: Lindaspio polybranchiata, a member of the Spionidae family, has been reported at the Lingshui Cold Seep, where it formed a dense population around this nascent methane vent. We sequenced and assembled the genome of L. polybranchiata and performed comparative genomic analyses to investigate the genetic basis of adaptation to the deep sea.

View Article and Find Full Text PDF

Background: The prevalence of obesity and type 2 diabetes mellitus (T2DM) is rising globally, particularly among children exposed to adverse intrauterine environments, such as those associated with gestational diabetes mellitus (GDM). Epigenetic modifications, specifically DNA methylation, have emerged as mechanisms by which early environmental exposures can predispose offspring to metabolic diseases. This study aimed to investigate DNA methylation differences in children born to mothers with GDM compared to non-GDM mothers, using saliva samples, and to assess the association of these epigenetic patterns with early growth measurements.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a prevalent malignancy worldwide, associated with significant morbidity and mortality. Cyclin-dependent kinase 1 (CDK1) plays a crucial role in cell cycle regulation and has been implicated in various cancers. This study aimed to evaluate the prognostic value of CDK1 in CRC and to identify traditional Chinese medicines (TCM) that can target CDK1 as potential treatments for CRC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!