Electrochemical Oxidative C(sp)-H/N-H Coupling of Diarylmethanes with Sulfoximines or Benzophenone Imine.

J Org Chem

Research Center of Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China.

Published: October 2021

Herein, we report an efficient electrochemical method for the synthesis of -alkylated sulfoximines by electrochemical oxidative C(sp)-H/N-H coupling of sulfoximines and diarylmethanes. In addition, we used the same conditions for electrochemical dehydrogenative amination of diarylmethanes with benzophenone imine as an aminating agent. The reactions showed good functional group tolerance and afforded the corresponding products in moderate to good yields without the use of a stoichiometric oxidant, a metal catalyst, or an activating agent.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.1c01647DOI Listing

Publication Analysis

Top Keywords

electrochemical oxidative
8
oxidative csp-h/n-h
8
csp-h/n-h coupling
8
benzophenone imine
8
electrochemical
4
coupling diarylmethanes
4
diarylmethanes sulfoximines
4
sulfoximines benzophenone
4
imine report
4
report efficient
4

Similar Publications

Ferroelectric polarization is considered to be an effective strategy to improve the oxygen evolution reaction (OER) of photoelectrocatalysis. The primary challenge is to clarify how the polarization field controls the OER dynamic pathway at a molecular level. Here, electrochemical fingerprint tests were used, together with theoretical calculations, to systematically investigate the free energy change in oxo and hydroxyl intermediates on TiO-BaTiO core-shell nanowires (BTO@TiO) upon polarization in different pH environments.

View Article and Find Full Text PDF

Acentric crystalline materials are the cornerstone of numerous cutting-edge technologies and have been highly sought-after, but they are difficult to construct controllably. Herein, by introducing a new p-block element to break the symmetrical environment of the d transition metal in the centric matrix TiTeO, a novel acentric tellurite sulfate, namely Ti(TeO)(SO), was successfully constructed. In its structure, two types of p-block element-centered oxo-anionic groups, [TeO] and [SO], endow [TiO] with an out-of-center distortion along the local C[111] direction, which is rare in titanium oxides containing a lone-pair cation.

View Article and Find Full Text PDF

Aryl diazenes, particularly azobenzenes (AB), represent a versatile class of compounds with significant historical and practical relevance, ranging from dyes to molecular machines, solar thermal and electrochemical storage. Their oxygen-substituted counterparts, azoxybenzenes (AOB), share structural similarities but have been less explored, especially in energy storage applications. This study investigates the redox properties of AOB, comparing them to AB, and evaluates their potential as redox-active materials for energy storage systems.

View Article and Find Full Text PDF

The electrochemistry and spectroelectrochemistry of Ru(porphyrin)(NO)(phenoxide) complexes Ru(por)(NO)(OPh) (por = OEP, 1a; TAP, 2a; Ph = CH), Ru(por)(NO)(OAr) (por = OEP, 1b; TAP, 2b; OAr = -OCH-(2-NHC(O)CF)), Ru(por)(NO)(OAr) (por = OEP, 1c; TAP, 2c; OAr = OCH-(2,6-NHC(O)CF); OEP = octaethylporphyrinato dianion, TAP = tetraanisolylporphyrinato dianion) indicate that initial one-electron oxidation results in structure-dependent net reactivity at the phenoxide ligand. Oxidation of 1a generates 1a+, which undergoes a relatively slow rate-limiting second-order follow-up reaction. In contrast, 2a undergoes a diffusion-limited follow-up reaction after oxidation.

View Article and Find Full Text PDF

The lower limit of overpotential derived from the scaling relationship in the generally proposed adsorbate evolution mechanism (AEM) greatly hinders the oxygen evolution reaction (OER) activity in electrochemical energy conversion. The lattice oxygen mechanism tends to be triggered on oxygen-enriched surfaces under conditions; however, the required specific geometry and electronic structure need in-depth exploration. Here, tunable CoO is used as a model material, where the reconstruction of dominantly exposed (110) surface under reaction conditions is first presented using an thermodynamic approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!