Herein, we report an efficient electrochemical method for the synthesis of -alkylated sulfoximines by electrochemical oxidative C(sp)-H/N-H coupling of sulfoximines and diarylmethanes. In addition, we used the same conditions for electrochemical dehydrogenative amination of diarylmethanes with benzophenone imine as an aminating agent. The reactions showed good functional group tolerance and afforded the corresponding products in moderate to good yields without the use of a stoichiometric oxidant, a metal catalyst, or an activating agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.1c01647 | DOI Listing |
Ferroelectric polarization is considered to be an effective strategy to improve the oxygen evolution reaction (OER) of photoelectrocatalysis. The primary challenge is to clarify how the polarization field controls the OER dynamic pathway at a molecular level. Here, electrochemical fingerprint tests were used, together with theoretical calculations, to systematically investigate the free energy change in oxo and hydroxyl intermediates on TiO-BaTiO core-shell nanowires (BTO@TiO) upon polarization in different pH environments.
View Article and Find Full Text PDFChem Sci
January 2025
Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
Acentric crystalline materials are the cornerstone of numerous cutting-edge technologies and have been highly sought-after, but they are difficult to construct controllably. Herein, by introducing a new p-block element to break the symmetrical environment of the d transition metal in the centric matrix TiTeO, a novel acentric tellurite sulfate, namely Ti(TeO)(SO), was successfully constructed. In its structure, two types of p-block element-centered oxo-anionic groups, [TeO] and [SO], endow [TiO] with an out-of-center distortion along the local C[111] direction, which is rare in titanium oxides containing a lone-pair cation.
View Article and Find Full Text PDFChemistry
January 2025
Justus-Liebig Universität, Institut für Organische Chemie, Heinrich-Buff-Ring 17, 35392, Giessen, GERMANY.
Aryl diazenes, particularly azobenzenes (AB), represent a versatile class of compounds with significant historical and practical relevance, ranging from dyes to molecular machines, solar thermal and electrochemical storage. Their oxygen-substituted counterparts, azoxybenzenes (AOB), share structural similarities but have been less explored, especially in energy storage applications. This study investigates the redox properties of AOB, comparing them to AB, and evaluates their potential as redox-active materials for energy storage systems.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, 62025-1652 USA.
The electrochemistry and spectroelectrochemistry of Ru(porphyrin)(NO)(phenoxide) complexes Ru(por)(NO)(OPh) (por = OEP, 1a; TAP, 2a; Ph = CH), Ru(por)(NO)(OAr) (por = OEP, 1b; TAP, 2b; OAr = -OCH-(2-NHC(O)CF)), Ru(por)(NO)(OAr) (por = OEP, 1c; TAP, 2c; OAr = OCH-(2,6-NHC(O)CF); OEP = octaethylporphyrinato dianion, TAP = tetraanisolylporphyrinato dianion) indicate that initial one-electron oxidation results in structure-dependent net reactivity at the phenoxide ligand. Oxidation of 1a generates 1a+, which undergoes a relatively slow rate-limiting second-order follow-up reaction. In contrast, 2a undergoes a diffusion-limited follow-up reaction after oxidation.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2020
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China.
The lower limit of overpotential derived from the scaling relationship in the generally proposed adsorbate evolution mechanism (AEM) greatly hinders the oxygen evolution reaction (OER) activity in electrochemical energy conversion. The lattice oxygen mechanism tends to be triggered on oxygen-enriched surfaces under conditions; however, the required specific geometry and electronic structure need in-depth exploration. Here, tunable CoO is used as a model material, where the reconstruction of dominantly exposed (110) surface under reaction conditions is first presented using an thermodynamic approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!