A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Facile Modification of a Noncovalently Fused-Ring Electron Acceptor Enables Efficient Organic Solar Cells. | LitMetric

Facile Modification of a Noncovalently Fused-Ring Electron Acceptor Enables Efficient Organic Solar Cells.

ACS Appl Mater Interfaces

Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Published: September 2021

Electron acceptors with nonfused aromatic cores (NCAs) have aroused increasing interest in organic solar cells due to the low synthetic complexity and flexible chemical modification, but the corresponding device performance still lags behind. Herein, we designed and synthesized two new quinoxaline-based NCAs, namely, QOC6-4H and QOC6-4Cl. Although both NCAs show good backbone coplanarity, QOC6-4Cl with chlorinated end groups exhibits higher extinction coefficient, enhanced crystallinity, and more compact π-π stacking, which is correlated with the stronger intermolecular interactions induced by chlorine atoms. Benefiting from the broader and stronger optical absorption, improved carrier mobilities, and suppressed charge recombination, a notable power conversion efficiency (PCE) of 12.32% with a distinctly higher short-current density () of 22.91 mA cm and a fill factor (FF) of 69.01% could be obtained for the PBDB-T:QOC6-4Cl-based device. The PCEs of PBDB-T:QOC6-4H were only lower than 8%, which could mainly be attributed to the unsymmetric charge transport. Our work proves that the chlorination of end groups is a facile and effective strategy to enhance the intermolecular interactions and thus the photovoltaic performance of NCAs, and a careful modulation of the intermolecular interactions plays a vital role in further developing both high-performance and low-cost organic photovoltaic materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c11412DOI Listing

Publication Analysis

Top Keywords

intermolecular interactions
12
organic solar
8
solar cells
8
facile modification
4
modification noncovalently
4
noncovalently fused-ring
4
fused-ring electron
4
electron acceptor
4
acceptor enables
4
enables efficient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!