Cd-free InP/ZnSeS quantum dots for ultrahigh-resolution imaging of stimulated emission depletion.

J Biophotonics

Center for Biomedical Optics and Photonics (CBOP) and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, People's Republic of China.

Published: December 2021

Stimulated emission depletion (STED) nanoscopy is a promising super-resolution imaging technique for microstructure imaging; however, the performance of super-resolution techniques critically depends on the properties of the fluorophores (photostable fluorophores) used. In this study, a suitable probe for improving the resolution of STED nanoscopy was investigated. Quantum dots (QDs) typically exhibit good photobleaching resistance characteristics. In comparison with CdSe@ZnS QDs and CsPbBr QDs, Cd-free InP/ZnSeS QDs have a smaller size and exhibit an improved photobleaching resistance. Through imaging using InP/ZnSeS QDs, we achieved an ultrahigh resolution of 26.1 nm. Furthermore, we achieved a 31 nm resolution in cell experiments involving InP/ZnSeS QDs. These results indicate that Cd-free InP/ZnSeS QDs have significant potential for application in fluorescent probes for STED nanoscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.202100230DOI Listing

Publication Analysis

Top Keywords

inp/znses qds
16
cd-free inp/znses
12
sted nanoscopy
12
quantum dots
8
stimulated emission
8
emission depletion
8
photobleaching resistance
8
qds
7
inp/znses quantum
4
dots ultrahigh-resolution
4

Similar Publications

Colloidal InP/ZnSeS-based quantum dots (QDs) are considered promising building blocks for light-emitting devices due to their environmental friendliness, high quantum yield (QY), and narrow emission. However, the intrinsic type-I band structure severely hinders potential photoelectrochemical (PEC) applications requiring efficient photoexcited carrier separation and transfer. In this study, the optoelectronic properties of InP/ZnSeS QDs are tailored by introducing Al dopants in the ZnSeS layer, which concurrently passivate the surface defects and act as shallow donor states for suppressed non-radiative recombination and improved charge extraction efficiency.

View Article and Find Full Text PDF

Green emissive InP-based quantum dots (QDs) remain less developed than red QDs because of the difficulty of controlling the reactivity of small InP cores. Herein, we report the synthesis of monodispersed green InP-based QDs using tris(dimethylamino)phosphine, a considerably inexpensive and safer phosphorus source compared to conventional tris(trimethylsilyl)phosphine. An organophosphorus compound, trioctylphosphine, was used to control the reaction kinetics by slowing the progression of the nucleation process, which weakened the aggregation behavior of the clusters and improved the size distribution.

View Article and Find Full Text PDF

Bright InP Quantum Dots by Mid-Synthetic Modification with Zinc Halides.

Inorg Chem

February 2023

Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan430072, P. R. China.

InP quantum dots (QDs) attract growing interest in recent years, owing to their environmental advantages upon applications in display and lighting. However, compared to Cd-based QDs and Pb-based perovskites, the synthesis of InP QDs with high optical quality is relatively more difficult. Here, we established a mid-synthetic modification approach to improve the optical properties of InP-based QDs.

View Article and Find Full Text PDF

Environmentally friendly quantum dots (QDs) of InP-based materials are widely investigated, but their reliability remains inadequate to realize their full potential and wide application. In this study, InP/ZnSeS/ZnS QDs (pristine QDs) were dispersed and embedded into Santa Barbara Amorphous-15 mesoporous particles (SBA-15 MPs) for the first time. A solvent-free method for preparing QD white light-emitting diodes (WLEDs) that is compatible with the WLED packaging process was developed.

View Article and Find Full Text PDF

Effectual Interface and Defect Engineering for Auger Recombination Suppression in Bright InP/ZnSeS/ZnS Quantum Dots.

ACS Appl Mater Interfaces

March 2022

Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

The main issue in developing a quantum dot light-emitting diode (QLED) display lies in successfully replacing heavy metals with environmentally benign materials while maintaining high-quality device performance. Nonradiative Auger recombination is one of the major limiting factors of QLED performance and should ideally be suppressed. This study scrutinizes the effects of the shell structure and composition on photoluminescence (PL) properties of InP/ZnSeS/ZnS quantum dots (QDs) through ensemble and single-dot spectroscopic analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!