Nitrated energetics are widespread contaminants due to their improper disposal from ammunition facilities. Different classes of nitrated energetics commonly co-exist in ammunition wastewater, but co-removal of the classes has hardly been documented. In this study, we evaluated the catalytic destruction of three types of energetics using palladium (Pd) nano-catalysts deposited on H-transfer membranes in membrane catalyst-film reactors (MCfRs). This work documented nitro-reduction of 2,4,6-trinitrotoluene (TNT), as well as, for the first time, denitration of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and pentaerythritol tetranitrate (PETN) over Pd at ambient temperature. The catalyst-specific activity was 20- to 90-fold higher than reported for other catalyst systems. Nitrite (NO) released from RDX and PETN also was catalytically reduced to dinitrogen gas (N). Continuous treatment of a synthetic wastewater containing TNT, RDX, and PETN (5 mg/L each) for more than 20 hydraulic retention times yielded removals higher than 96% for all three energetics. Furthermore, the concentrations of NO and NH were below the detection limit due to subsequent NO reduction with > 99% selectivity to N. Thus, the MCfR provides a promising strategy for sustainable catalytic removal of co-existing energetics in ammunition wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.127055 | DOI Listing |
Inorg Chem
January 2025
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Zwitterionic energetic materials offer a unique combination of high performance and stability, yet their synthesis and stability enhancement remain key challenges. In this study, we report the synthesis of a highly stable (dinitromethyl-functionalized zwitterionic compound, 1-(amino(iminio)methyl)-4,5-dihydro-1H-pyrazol-5-yl)dinitromethanide (), with a thermal decomposition temperature of 215 °C, surpassing that of most previously reported energetic monocyclic zwitterions ( < 150 °C). This compound was synthesized via intramolecular cyclization of a trinitromethyl-functionalized hydrazone precursor.
View Article and Find Full Text PDFJ Mol Model
January 2025
College of Safety Science and Engineering, Nanjing Tech University, Nanjing, 210009, China.
Context: This article mainly studies three isomers of CHNO, namely 5-methyl-3,4-dinitro-1- (trinitromethyl) -1H pyrazole (1), 4-methyl-3,5-dinitro-1- (trinitromethyl) -1H pyrazole (2), and 3,5-bis (dinitromethyl) -4-nitro-1H-pyrazole (3). These three substances are excellent candidates for energetic materials, but their properties under external electric fields (EEF) have not been studied. Therefore, this article studied the properties of three isomers under EEF using density functional theory (DFT), and conducted statistical analysis on the obtained data, including the molecular structure, frontier molecular orbitals, surface electrostatic potential, and nitrate charge of the three isomers.
View Article and Find Full Text PDFJ Mol Model
January 2025
Department of Chemistry, Military Institute of Engineering, Praça General Tibúrcio 80, Rio de Janeiro, Brazil.
Context: Nitrocellulose, widely used in energetic materials, is prone to thermal and chemical degradation, compromising safety and performance. Stabilizers are molecules used in the composition of nitrocellulose-based propellants to inhibit the autocatalytic degradation process that produces nitrous gases and free nitric acids. Curcumin, (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, known for its antioxidant properties and a potential green stabilizer, was investigated using Density Functional Theory (DFT) focusing on its interaction with nitrogen dioxide.
View Article and Find Full Text PDFMolecules
November 2024
N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia.
In this study, the electrochemical coupling of nitrosoarenes with ammonium dinitramide is discovered, leading to the facile construction of the nitro--azoxy group, which represents an important motif in the design of energetic materials. Compared to known approaches to nitro--azoxy compounds involving two chemical steps (formation of azoxy group containing a leaving group and its nitration) and demanding expensive, corrosive, and hygroscopic nitronium salts, the presented electrochemical method consists of a single step and is based solely on nitrosoarenes and ammonium dinitramide. The dinitramide salt plays the roles of both the electrolyte and reactant for the coupling.
View Article and Find Full Text PDFRSC Adv
November 2024
Department of Chemistry, Faculty of Basic Sciences, Ilam University P.O. Box 69315516 Ilam Iran
A global trend for the development of energetic materials using various sources is promoted by researchers annually. Solid bituminous hydrocarbons can play a key role in carbon science as abundant, low-cost, and mineral carbonaceous substrates. This study focuses on the design and synthesis of a series of new energetic materials from natural asphalt (NA), petroleum pitch (PP) and petroleum bitumen (PB) as industrial and available solid bituminous hydrocarbons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!