Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plants have evolved many leucine-rich repeat receptor-like kinases (LRR-RLKs) that control all aspects of plant life in a kinase-dependent or -independent manner. DROOPY LEAF1 (DPY1), which is a subfamily II LRR-RLK authentic kinase, controls leaf droopiness by negatively regulating early brassinosteroid (BR) signaling in foxtail millet. In this study, we proved that overexpressing kinase-inactive DPY1 does not rescue the droopy leaf phenotype of plants because the mutated DPY1 cannot repress BR signaling, suggesting that kinase activity is required for DPY1 to control BR signaling. Moreover, seven DPY1 sites potentially transphosphorylated by SiBAK1 were identified as crucial for DPY1 activation. These findings highlight the importance of kinase activity for the functionality of DPY1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8525978 | PMC |
http://dx.doi.org/10.1080/15592324.2021.1976561 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!