Microbial fermentation of grape-skin extracts is found to synthesize anthocyanin oligomers (AO), which are more active than the monomeric anthocyanins that are effective for some metabolic diseases such as diabetes and obesity. This study investigated the functional role of AO in 3T3-L1 white adipocyte metabolism, with a focus on inducing browning. To achieve this, we determined the expressions of core genes and protein markers responsible for browning and lipid metabolism in response to AO treatment of 3T3-L1 white adipocytes. AO exposure significantly increases the expressions of beige-specific genes (Cidea, Cited1, Ppargc1α, Prdm16, Tbx1, Tmem26, and Ucp1) and brown-fat signature proteins (UCP1, PRDM16, and PGC-1α), and suppresses the expressions of lipogenic marker proteins while enhancing the protein levels of lipolysis in white adipocytes. The mechanistic study revealed stimulation of white fat browning via activation of the β3-AR/PKA/p38 axis and ERK/CREB signaling pathway subsequent to AO treatment. In conclusion, our current findings indicate the beneficial effects of AO for the treatment of obesity with interesting properties such as regulating the browning of adipocytes and increasing thermogenic activity. Although further research based on animal models or clinical trials remains, AO treatment can bring more insights into the treatment of obesity and metabolic syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ptr.7276 | DOI Listing |
FASEB J
January 2025
Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China.
Gestational Diabetes Mellitus (GDM) is the most frequent complication during pregnancy. Pharmacological interventions, such as peptide drugs that focused on improving the insulin sensitivity might be promising in the prevention and treatment of GDM. In this study, we aimed to investigate the role and mechanism of a novel peptide, named AGDMP1 (Anti-GDM peptide 1), which we previously identified lower in the serum of GDM patients using mass spectrometry, on the adipose insulin resistance in GDM.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China. Electronic address:
Stimulator of interferon response cGAMP interactor 1 (STING1), as an innate immune adaptor protein that mediates DNA sensing, has attracted tremendous biomedical interest. However, several recent researches have revealed the key role of STING1 in regulating the metabolic pathway. Here, we investigated its role in adipocyte differentiation.
View Article and Find Full Text PDFInt J Obes (Lond)
January 2025
Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston Salem, NC, 27101, USA.
Previous studies have identified G protein-coupled receptor (GPCR) kinase 5 (GRK5) as a genetic factor contributing to obesity pathogenesis, but the underlying mechanism remains unclear. We demonstrate here that Grk5 mRNA is more abundant in stromal vascular fractions of mouse white adipose tissue, the fraction that contains adipose progenitor cells, or committed preadipocytes, than in adipocyte fractions. Thus, we generated a GRK5 knockout (KO) 3T3-L1 preadipocyte to further investigate the mechanistic role of GRK5 in regulating adipocyte differentiation.
View Article and Find Full Text PDFAdipocyte
December 2025
Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Obesity is a global health concern that promotes chronic low-grade inflammation, leading to insulin resistance, a key factor in many metabolic diseases. Angiotensin 1-7 (Ang 1-7), a component of the renin-angiotensin system (RAS), exhibits anti-inflammatory effects in obesity and related disorders, though its mechanisms remain unclear. In this study, we examined the effect of Ang 1-7 on inflammation of white adipose tissue (WAT) in dietary-induced obese mice.
View Article and Find Full Text PDFBiomed J
January 2025
Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan. Electronic address:
Background: Obesity and circadian rhythm disruption are significant global health concerns, contributing to an increased risk of metabolic disorders. Both adipose tissue and circadian rhythms play critical roles in maintaining energy homeostasis, and their dysfunction is closely linked to obesity. This study aimed to assess the effects of chronic low-dose SR9009, a REV-ERB ligand, on circadian disruption induced by constant light exposure in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!