Hair loss and predominantly female hair loss is a common dermatologic condition with serious psychosocial consequences. Effective treatments remain scarce mainly due to the multifactorial elements involved in the onset of this chronic condition. The approved drugs available are based on molecules designed towards a single pharmacological target and do not interact with the various biochemical mechanisms involved in alopecia. Phytochemical compounds and their derivatives represent a plethora of biologically active agents, which act in synergism and simultaneously activate different biochemical pathways. Here we present an herbal formulation composed of herbs, vitamins, and minerals acting on hair regrowth and hair micro vascularization. This study aimed at evaluating the potential of Phyllotex™ to treat multifactorial androgenetic alopecia (AGA) in males and females, as well as delving into its molecular mechanisms of action. studies showed that the herbal formula stimulates cell proliferation of both dermal papilla and HaCaT cells and increases the phosphorylated form of the extracellular signal-regulated kinase 1 and 2 (ERK1/2), a well-known marker for cell proliferation. Surprisingly, expression of TGF-β1 was significantly suppressed without blocking DHT production. Additionally, the formula was able to rescue cells from the oxidative stress conditions generated by 2,2'-Azobis (2-amidinopropane) dihydrochloride (AAPH), a high oxidative agent. This data supports the potential use of this formulation as a hair growth-promoting agent for the treatment of both male and female AGA due to its multifactorial composition, which grants it the ability to cope with the different mechanisms involved in alopecia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426528PMC
http://dx.doi.org/10.1016/j.heliyon.2021.e07888DOI Listing

Publication Analysis

Top Keywords

hair loss
8
mechanisms involved
8
involved alopecia
8
cell proliferation
8
hair
6
hair growth-promotion
4
growth-promotion effects
4
effects cellular
4
cellular level
4
level antioxidant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!